Responsive image
博碩士論文 etd-0730112-194343 詳細資訊
Title page for etd-0730112-194343
論文名稱
Title
多鐵性Bi0.9Pb0.1FeO3/SrRuO3/SrTiO3薄膜之成長與鐵電性研究
Study of Film Growth Ferroelectricity on Bi0.9Pb0.1FeO3/SrRuO3/SrTiO3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-18
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
矯頑電場、壓電響應訊號、電疇、壓電力原子顯微鏡、自旋電子元件
spintronics, PFM, domain, remnant piezoresponse, coercive field
統計
Statistics
本論文已被瀏覽 5680 次,被下載 415
The thesis/dissertation has been browsed 5680 times, has been downloaded 415 times.
中文摘要
BiFeO3為室溫多鐵材料,其反鐵磁性與鐵電性共存於室溫以上,具有很強的鐵磁、鐵電偶合效應,可應用於自旋電子元件與二元的鐵電隨機記憶體。本文探討不同表面形貌之SrTiO3薄膜影響後續成長之SrRuO3與Pb摻雜Pb之BiFeO3(BPFO) 及其鐵電性。以壓電力原子顯微鏡觀察不同表面形貌之PBFO 的鐵電電疇,發現具特殊島狀結構的PBFO上的偶極矩呈放射狀;另外,電疇大小隨者樣品厚度變厚而增加,壓電響應訊號也隨著樣品厚度變化而其剩餘響應訊號也增加;然且矯頑電場因膜厚變薄而偏移。
Abstract
BiFeO3, a material with coexistence of antiferromagnetic and ferroelectric phases at room temperature, has been expecting to be used on novel devices such as FeRAM and spintronics. In this research, it is found that the surface morphologies of SrTiO3 influence the subsequence growth of SrRuO3 and Pb-dopant BiFeO¬3 (PBFO) films. The domain structures are associated to various surface structure and different thickness of PBFO investigated by a piezoresponse force microscopy. The radial-polarization-like domains was found on the PBFO island structures, and the domain size and the remnant piezoresponse increases with the thickness increasing; in contrary, the shifting of the electric coercive field occurs in the thinner films.
目次 Table of Contents
ABSTRACT i
CHINESE ABSTRACT (中文摘要) ii
CONTENTS iii
FIGURE LIST vi
Chapter 1
Introduction[1-1][1-2] 1
Reference 3
Chapter 2
2-1 Introduction of Materials 4
2-1-1 Introduction of SrTiO3[2-1-1][2-1-2] 4
2-1-2 Introduction of SrRuO3 6
2-1-3 The Physical Properties of BiFeO3 7
2-1-4 Reference 13
2-2 Introduction of Instruments 15
2-2-1 Radio Frequency Magnetron Sputtering System 15
2-2-2 Atomic Force Microscopy 17
2-2-3 Piezoresponse Force Microscopy[2-2-3] [2-2-4] [2-2-5] 20
2-2-4 Application of Lockin Amplifier[2-2-6] 24
2-2-5 X-ray Photoemission Spectroscopy[2-2-7] 25
2-2-6 X-ray Diffraction[2-2-8] 26
2-2-7 Reference 29
Chapter 3
3-1 Target Preparation Process 31
3-2 Cleaning Process of STO [100] Substrates 35
3-3 Comparison of Different Annealing Temperature of STO (100) Substrates 37
3-4 Process of Growth SRO Thin Film and Surface Analysis 42
3-5 the Process of Growing PBFO Thin Film and Surface Analyze 45
3-6 the X-ray Analyzing of Epitaxial Quality of PBFO 50
3-8 Reference 52
Chapter 4
4-1 Comparison of PFM images of PBFO Samples 53
4-2 The Ferroelectric Domain of Island Structure of PBFO 60
4-3 the Analysis of Piezoresponse Signal of PBFO 66
Chapter 5
Conclusion 71
Chapter 6
6-1 Appendix 1: Comparison of Pb-dopant and Ca-dopant BFO Bulk 72
參考文獻 References
[1-1] N. A. Hill, (2000), Why Are There so Few Magnetic Ferroelectrics, J. Phys. Chem. B104, 6694.
[1-2] S.W Cheong, M. Mostovoy. (2007), Multiferroics: a magnetic twist for ferroelectricity. Nature Mater. 6, 13.
[1-3] W. Eerenstein, N. D. Mathur, J. F. Scott. (2006), Multiferroic and magnetoelectric materials. Nature Mater. 442, 759.
[2-1-1] A. Biswas,P. B. Rossen, C.-H. Yang, W. Siemons, M.H. Jung, I. K. Yang, R. Ramesh, Y. H. Jeong. (2011), Universal Ti-rich termination of atomically flat SrTiO3 (001), (110) and (111) surfaces. Appl. Phys. Lett. 98, 051904.
[2-1-2] M. A. Henderson. (1999), surface perspective on self-diffusion in rutile TiO2. Surf. Sci. 419, 174–87A
[2-1-3] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohada, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, (1994), Atomic Control of the SrTiO3 Crystal Surface Science 266, 1540
[2-1-4] D. A. Bonnell and J. Garra. (2008), Scanning probe microscopy of oxide surfaces: atomic structure and properties. Rep. Prog. Phys. 71, 044501
[2-1-5] C.W. Jones, P.D. Battle, P. Lightfoot, and T.A. Harrison. (1989), The structure of SrRuO3 by time-of-flight neutron powder diffraction. Acta Cryst. C45, 365.
[2-1-6] Murtaza Bohra, C. P. Wu, H. J. Yeh, Y. H. Cheng, C. C. Peng et al. (2011), Role of Ru vacancies in the magnetism of strain relaxed SrRuO3 films on SrTiO3 substrates. J. Appl. Phys. 109, 07D728
[2-1-7] A. Grutter et al., (2010), Enhanced magnetism in epitaxial SrRuO3 thin films. Appl. Phys. Lett. 96, 082509
[2-1-8] J. Seidel et al., (2009), Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229
[2-1-9] T. Zhao et al., (2006), Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823
[2-1-10] G. Catalan, J. F. Scott. (2009), Physics and Applications of Bismuth Ferrite. Adv. Mater. 21, 2463.
[2-1-11] G. Catalan, et al., (2009), Effect of chemical substitution on the Néel temperature of multiferroic Bi1−xCaxFeO3. Phys. Rev. B. 79, 212415
[2-1-12] M. Bibes, A. Barthe´le´my. (2008), Towards a magnetoelectric memory. Nature Mater. 7, 425.
[2-1-13] T. Hotta, S. Yunoki, M. Mayr, and E. Dagotto, (1999), A-type Antiferromagnetic and C-type Orbital-Ordered State in LaMnO3 Using Cooperative Jahn-Teller Phonons. Phys. Rev. B. 60 R15 009.
[2-1-14] S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson , M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen C. B. Eom, (2010), Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nature Mater. 9, 309.
[2-1-15] J. Stöhr H.C. Siegmann, (2006), Magnetism: From Fundamentals to Nanoscale Dynamics, Springer Series in Solid State Science, p. 252 (Springer, Berlin Heidelberg New York) 
[2-2-1] 呂助增, 真空技術與應用, 國家實驗研究院儀器科技研究中心, 2001 年
[2-2-2] 陳裕展, 正修科技大學電機工程研究所, 2010年
[2-2-3] A. L. Kholkin, S. V. Kalinin, A. Roelofs, A. Gruverman. 2007, Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale,2 volumes. New York: Sergei Kalinin and Alexei Gruverman.
[2-2-4] Roger Proksch, Asylum Research and Sergei Kalinin, Piezoresponse Force Microscopy with Asylum Research AFMs, http://www.asylumresearch.com/Applications/PFMAppNote/PFMAppNote.shtml
[2-2-5] S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev et al., 1999, High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitor, Appl. Phys. Lett. 86, 607.
[2-2-6] Laboratory for High Magnetic Field and Low Temperature, National Chung Hsing University.
(http://www.columbia.edu/~jt2078/Space/PEM-90.pdf)
[2-2-7] Louis Scudiero, x-ray photoemission microscopy, washington state university.
(http://public.wsu.edu/~scudiero/documents/571-XPS-Lecture2_004.pdf)
[2-2-8] B.D. Cullity, 1981, Elements of X-ray Diffraction, 興業圖書股份有限公司
[2-2-9] The manual of Bede D1
(http://www2.nsysu.edu.tw/Physics/htm/lab/ltlab/newhome.html) 
[3-1] 蔡柏舟, (2008), preparation of BiFeO3 thin films by sol-gel method and the effects of different sintering conditions, 國立成功大學材料所
[3-2] 鄭永鑫, 國立中山大學物理研究所, 2010年
[3-3] Chen Weitin,Williams, A.J., Ortega-San Martin, L., Li Ming, Sinclair, D.C., Zhou Wuzong, Attfield, J.P. (2009), Robust antiferromagnetism and structural disorder in BixCa1-xFeO3 perovskites, Chem. Mater. 21, 2085–2093
[3-4] Bushmeleva, S.N.;Pomjakushin, V.Yu.;Pomjakushina, E.V.;Sheptyakov, D.V.;Balagurov, A.M. (2006), Evidence for the band ferromagnetism in SrRuO3 from neutron diffraction. J MAGN Magn Mater, 305, 491
[3-5]楊孟璇, 國立中山大學物理研究所, 2009年
[3-6] A. Biswas, P. B. Rossen, C. H. Yang, W. Siemons, M.-H. Jung et al., (2011), Universal Ti-rich termination of atomically flat SrTiO3 (001), (110), and (111) surfaces. Appl. Phys. Lett. 98, 051904
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code