Responsive image
博碩士論文 etd-0730112-231617 詳細資訊
Title page for etd-0730112-231617
論文名稱
Title
以改良後的鎵酸鋰基材作化學汽相沉積氧化鋅薄膜來改善其磊晶品質
Improved quality of nonpolar ZnO epitaxial film on modified LiGaO2 substrate by chemical vapor deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-05
繳交日期
Date of Submission
2012-07-30
關鍵字
Keywords
非極性、磊晶、化學汽相沉積、氮化、氧化鋅
epitaxy, CVD, nitridation, nonpolar, ZnO
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
本文研究內容為利用水平管狀加熱爐作化學汽相沉積(Chemical Vapor Deposition, CVD),以Zinc 2,4-pentanedionate monohydrate[Zn(C5H7O2)2.H2O]作為鋅的前驅物(precursor),通入氧氣作反應氣體,及氮氣為載氣(carrier gas),磊晶成長氧化鋅(Zinc Oxide, ZnO)於改良後的鎵酸鋰(LiGaO2, LGO)基材。
在第一部份實驗中,吾人選定(010)LGO作基材,通入氨氣進行表面氮化,改變不同的氮化時間,以SEM觀察LGO的表面氮化物形貌變化,發現長時間氮化有助於表面晶粒的均勻化及方向單一化,因此我們選用長時間氮化的LGO作為基材成長ZnO薄膜。
第二部分實驗為磊晶成長ZnO薄膜,首先改變沉積位置作為參數,發現太過遠離前驅物時,繞射峰的半高寬會變寬,代表結晶品質下降,而在適當距離下成長ZnO,在SEM觀察下為表面連續的薄膜。以PL作光譜分析,得到ZnO的發光強度隨沉積位置與前驅物之距離減少而增強,黃綠光發光帶則減弱,不過由於需考慮氮化物緩衝層本身的結晶品質及基材缺陷導致的發光,因此無法斷定發光強度與試片沉積位置的絕對關係。
接著以成長溫度作為變數成長ZnO於經氮化處理的(010)LGO上,發現於600℃~800℃之溫度區間皆可獲得單純的(11-20)ZnO,並沒有其他明顯ZnO的晶面繞射訊號。結晶品質方面,600℃~800℃成長之ZnO繞射峰半高寬皆小於0.7°,又以700℃時為最小(0.5°)。以SEM觀察表面形貌,磊晶層皆呈現高度方向性,且晶粒為長條狀,高溫成長時可形成連續薄膜,較低溫成長時則看出明顯晶界。PL發光性質部分,INBE/IGreen比值隨成長溫度下降而提升,表示高溫雖較容易驅使ZnO呈層狀生長,但也會使發光性質變差。
最後在固定總氣體流量(1000sccm)下,改變反應氣體氧氣的分壓(氣體流量比),觀察對ZnO薄膜生長的影響,發現於高氧環境下,ZnO的繞射訊號明顯較強,說明成長速率較高,而繞射峰半高寬方面,氧氮比接近1:1時有較小值。SEM影像中可發現高氧環境下ZnO皆為較平坦的連續薄膜形貌,而隨著氧分壓下降,ZnO漸漸由層狀生長模式轉變為島狀成核模式,甚至出現成核過快的奈米柱結構,也因此大大增加ZnO表面積,因此其PL分析下發光強度最強,而INBE/IGreen比值也略隨氧分壓的降低而升高。
我們進一步利用TEM的選區繞射分析及XRD phi scan分析ZnO的磊晶關係,證實ZnO是以最低晶格失配的堆疊關係成長的。而磊晶成長出現的內部應力型態也利用XRD繞射峰及拉曼光譜特徵峰的偏移相佐證。基材、緩衝層及磊晶層個別的PL分析及試片膜厚分析說明了此前的PL光譜表現,黃綠光帶主要來源來自膜內缺陷而非基材放光。低溫PL也顯示ZnO內可能存在雜質或缺陷能階。AFM表面分析顯示,提高氧氣分壓不僅有利層狀生長,也能降低表面粗糙度。
Abstract
In this work, Nitridated b-LiGaO2 substrates have been used to grow nonpolar a-plane ZnO epitaxial films by a homemade thermal chemical vapor deposition. We control the quality of the films by adjusting the deposition position, growth temperature and oxygen partial pressure. The properties of the ZnO films was investigated by x-ray diffraction(XRD),
scanning electron microscopy(SEM), atomic force microscopy(AFM), photoluminescence spectra(PL), Raman spectra(Raman) and transmission electron microscopy(TEM).
The results show that the crystal quality, surface morphology and optical properties of a-plane ZnO films are strongly related to the deposition position and growth temperature. It is also found that the surface roughness of the ZnO films gets more smoothly with increasing the oxygen partial pressure.
Up to now, ZnO films grown at 700℃ diplay the best crystal quality, the full width at half maximum values of (11-20)ZnO omega scan rocking curve is 0.5°. In comparison with above growth condition, it demonstrate better optical properties by shortening deposition position and increasing growth temperature to 750℃. Room temperature PL spectra exhibit a strong near band edge emission and a negligible green band. Furthermore, low temperature PL spectra is dominated by neutral donor-bound excitons and free electron-to-bound emission.
From the TEM selected area diffraction patterns and the XRD phi angle scan, the epitaxy relationship between ZnO and LGO is determined as [001]LGO//[0001]ZnO and [100]LGO//[10-10]ZnO. XRD omega-two theta scan and Raman spectra analysis are carried out to characterize the status of the strain in ZnO film is compressive, the reason is illustrate in detail.
目次 Table of Contents
誌謝 II
摘要 IV
Abstract VI
目錄 VII
圖目錄 IX
表目錄 XI
第一章 前言 1
第二章 理論基礎 3
2-1 氧化鋅 3
2-1-1氧化鋅基本性質 3
2-1-2非極性氧化鋅 4
2-2 氮化鎵 6
2-2-1氮化鎵基本性質 6
2-2-2多孔氮化鎵 6
2-3 鎵酸鋰 7
2-4 薄膜成長 8
2-5 異質磊晶 10
2-6 影響薄膜磊晶的因素 12
2-7 緩衝層 13
2-8 化學汽相沉積 13
第三章 文獻回顧 16
3-1重要文獻回顧 16
3-2研究動機 17
第四章 實驗內容 19
4-1 實驗流程 19
4-2 磊晶製程 20
4-2-1實驗裝置 20
4-2-2實驗步驟 21
4-2-3實驗參數 23
4-3 試片分析 26
4-3-1分析原理 26
4-3-2分析設備 27
第五章 實驗結果 30
5-1 LGO基材經過不同氮化時間的比較 30
5-1-1 XRD分析 30
5-1-2 SEM表面形貌分析 32
5-2 沉積位置對ZNO磊晶的影響 34
5-2-1 XRD分析 34
5-2-2 SEM表面形貌分析 36
5-2-3 PL發光性質分析 38
5-3 成長溫度對ZNO磊晶的影響 39
5-3-1 XRD分析 39
5-3-2 SEM表面形貌分析 42
5-3-3 PL發光性質分析 45
5-4 氧分壓對ZNO磊晶的影響 46
5-4-1 XRD分析 46
5-4-2 SEM表面形貌分析 48
5-4-3 PL發光性質分析 52
5-5 深入分析 54
5-5-1 磊晶關係 54
5-5-2 應力分析 56
5-5-3 光學性質 59
5-5-4 表面分析 61
第六章 討論 64
第七章 結論 66
參考文獻 67
參考文獻 References
[1] R. Stevenson, “The LED's Dark Secret”, IEEE spectrum, 2009.
[2] A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater., 4
(2005) 42.
[3] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun., 103 (1997) 459.
[4] V. Srikant, D.R. Clarke, J. Appl. Phys., 83 (1998) 5447.
[5] M. Kadota, M. Minakata, J. Appl. Phys., 37 (1998) 2923.
[6] K. Maeda, M. Sato, I. Niikura, T. Fukuda, Semicond. Sci. Technol., 20 (2005) S49.
[7] S. B. Zhang, S.H. Wei, A. Zunger, Physical Review B, 63 (2001) 075205.
[8] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida T. Yasuda, Y. Segawa, Appl. Phys. Lett., 72 (1998) 2466.
[9] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett., 78 (2001) 1237.
[10] Pearson’s Handbook of Crystallographic Data, 4795.
[11] H. Karzel et al., Phys. Rev. B, 53 (1996) 11425.
[12] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, T. Steiner, Materials Today, 7 (2004) 34.
[13] C.H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Appl. Phys. Lett., 1848 (2003) 1848.
[14] S. R. Morrison, Sensors and Actuators, 12 (1987) 425.
[15] J. C. Anderson, Journal of Vaccum Science Technology, A4 (1986) 610.
[16] U. Lampe, Ceramics Bulletin, 69 (1990) 1959.
[17] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan,
X. G. Kong, J. Lumin., 99 (2002) 149.
[18] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, J.Appl.Phys., 43 (2004) 2602.
[19] G. Vaschenko, D. patel, C. S. Menoni, N. F. Gardner, J. Sun, W. Gotz, C. N. Tome, B.
Clausen, Phys. Rev. B, 64 (2001) 241308.
[20] F. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.P. Fauie, Appl. Phys. Lett., 79 (2001) 194.
[21] M.C. Chou, D.R. Hang, H. Kalisch, R.H. Jansen, Y. Dikme, M. Heuken, G.P. Yablonskii, J. Appl. Phys., 101 (2007) 103106.
[22] J. Zhao, L. Hu, Z.Wang, Z. Wang, H. Zhang,Y. Zhao, and X. Liang, J. Cryst.Growth,
280 (2005) 455.
[23] K.Tanaka, N.Kotera, H. Nakamura, Electronics Letters, 34 (1998) 2163.
[24] S. S. Lu, “InGaAlAs/InP Electro-Absorption Modulator Structures Grown by Molecular Beam Epitaxy“, thesis of NSYSU, 5 (2003).
[25] T. Ishii, Y.Tazoh, S. Miyazawa, J. Cryst.Growth, 189-190(1998)208.
[26] R. M. Feenstra, “Porous Silicon Carbide and Gallium Nitride”, John Wiley, 2008, pp.78-95.
[27] L. T. Canham, Appl. Phys. Lett., 57 (1990)1046.
[28] M. Marezio, Acta Crystallogr., 18 (1965) 481.
[29] J. P. Remeika, A.A. Ballman, Appl. Phys. Lett., 5 (1964) 180.
[30] T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth, 189-190 (1998) 208-212.
[31] S. Nanamatsu, K. Doi, M. Takahashi, J. Appl. Phys., 11 (1972) 816.
[32] 田民波,“薄膜技術與薄膜材料”,五南出版社出版 (2007年)。
[33] K. N. Tu, J. W. Mayer, L. C. Feldman, “Electronic Thin Film Science”, Free
Press, 1996.
[34] H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition,
1999, pp.12-31..
[35] C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, 1990, pp.102-107.
[36] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth,
98 (1989) 209.
[37] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys., 84 (1998) 71.
[38] T. Koyama and S. F. Chichibu, J. Appl. Phys., 95 (2004) 7856.
[39] M. C. Chou, L. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, C. W. Chen, J. Cryst. Growth, 308 (2007) 412.
[40] S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li, C. Xia, Y. Hang, J. Xu, J. Cryst. Growth, 292 (2006) 125.
[41] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H.Koinuma, J. Appl. Phys., 92 (2002) 7157.
[42] M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zeng, Z. X. Mei, J. F. Jia, H. Chen, and Q. K. Xue, Appl. Phys. Lett., 87 (2005) 202107.
[43] H. Matsui, H. Tabata, Appl. Phys. Lett., 87 (2005) 143109.
[44] T. Moriyama and S. Fujita1, J. Appl. Phys., 44 (2005) 7919.
[45] J. Z. Perez, V. M. Sanjose, E. P. Lidon, J. Colchero, Phys. Rev. Lett., 95 (2005) 226105.
[46] T. Moriyama, S. Fujita, J. Appl. Phys., 44 (2005) 7919.
[47] S. Lautenschlaeger, S. Eisermann, M. Hofmann, U. Roemer, M. Pinnisch, A. Laufer, B. Meyer, H. Wenckstern, A. Lajn, F. Schmidt, M. Grundmann, J. Blaesing, A. Krost, J. Cryst. Growth, 312 (2010) 2078.
[48] S. K. Han, S. K. Hong, J. W. Lee, J. G. Kim, M. Jeong, J. Y. Lee, S. I. Hong, J. S.Park,
Y. E. Ihm, J. S.Ha, T. Yao, Thin Solid Films, 519 (2011) 6394.
[49] P. Ding, X. H. Pan, J. Y. Huang, H. P. He, B. Lu, H. H. Zhang, Z. Z. Ye, J. Cryst. Growth, 331 (2011) 15.
[50] Y. Chen, H. J. Ko, S. K. Hong, T. Yao, Appl. Phy. Lett., 76 (2000) 559.
[51] T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura and H. Muto, Thin Solid Films,
411 (2002) 60.
[52] S. H. Jeong, I. S. Kim, S. S. Kim, J. K. Kim, B. T. Lee, J. Cryst. Growth, 264 (2004) 110.
[53] V.Khranovskyy, R. Minikayev, S. Trushkin, G. Lashkarev, V.Lazorenko, U. Grossner,
W. Paszkowicz, A. Suchocki, B. G. Svensson, R. Yakimova, J. Cryst. Growth,
308 (2007) 93.
[54] H. Nishinaka, Y. Kamada, N.i Kameyama, S. Fujita, J. Appl. Phys.,
48 (2009) 121103.
[55] S. H. Park, T. Minegishi, H. J. Lee, D. C. Oh, H. J. Ko, J. Appl. Phys.,
110 (2011) 053520.
[56] T. Sahoo, J. W. Jeon, V. Kannan, C. R. Lee, Y. T. Yu,Y. W. Song, I. H. Lee, Thin
Solid Films, 516 (2008) 8244.
[57] J. P. Cui, X. F. Wang, D. Yao, J. X. He,Y. P. Zeng, Chin. Phys. Lett. Vol. 25,
No. 6 (2008) 2277.
[58] H. Lin, S. Zhou, H. Teng, X. Hou, T. Jia, S. Gu, S. Zhu, Z. Xie, P. Han, R. Zhang, K.
Xu, Appl. Surf. Science, 255 (2009) 9146.
[59] S. Liua, S. Zhoua, Y. Wanga, X. Zhang, X. Lib, C. Xiaa, Y. Hanga, J. Xu, J. Cryst.
Growth, 292 (2006) 125.
[60] T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, R. Zhang, J. Cryst. Growth, 310
(2008) 3144.
[61] T. S. Cheng, C. T. Foxon, S. V. Novikov, Semiconductors, 30 (1996) 603.
[62] 王欽輝,“在鎵酸鋰基板晶由直接與氨氣反應生長M面(10-10)氮化鎵“,國立中
山大學材料與光電科學學系碩士論文初稿 (2011年)。
[63] M. S. Kim, K. G. Yim, J. Y. Leem, J. Kor. Phy. Society, 59 (2011) 2354.
[64] 廖彥翔,“利用化學氣相沉積法生長非極性之氧化鋅薄膜在LiGaO2上“,國立
中山大學材料與光電科學學系碩士論文 (2010年)。
[65] K.A. Alim, V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett., 86 (2005) 053103.
[66] F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, A. Polian, Phys. Rev. B, 65 (2002) 092101.
[67] P. Waltereit, O. Brandt, M. Ramsteiner, R. Uecker, P. Reiche, K. H. Ploog, J. Cryst. Growth, 218 (2000) 143.
[68] O. Madelung, “Semiconductors”, Data Handbook 3rd edition, pp.106.
[69] Y. Huang, M. Liu. Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B, 97 (2003) 111.
[70] M. Schirra, R. Schneider, A. Reiser, G..M. Prins, M. Feneberg, J. Biskupek, U. Kaiser, C.E. Krill, K. Thonke, R. Sauer, Phys. Rev. B. 77 (2008) 125215.
[71] S.F. Chichibu, T. Sota, G. Cantwell, D.B. Eason, C.W. Litton, J. Appl. Phys., 93 (2003) 756.
[72] C. Klingshirn, Phys. Status Solidi B, 71 (1975) 547.
[73] Q. Sung, C.D. Yerino, Y. Zhang, Y.S. Cho, S.Y. Kwon, B.H. Kong, H.K. Cho, I.H. Lee, J. Han, J. Cryst. Growth, 311 (2009) 3824.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code