Responsive image
博碩士論文 etd-0730113-051304 詳細資訊
Title page for etd-0730113-051304
論文名稱
Title
以拉格朗日連結結構分析空蝕流場之研究
Investigation of cavitating flow by lagrangian coherent structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-23
繳交日期
Date of Submission
2013-09-03
關鍵字
Keywords
質點追蹤、空蝕現象、FTLE、紊流、拉格朗日連結結構
Cavitation, FTLE, Turbulence, Particle tracking, LCS
統計
Statistics
本論文已被瀏覽 5665 次,被下載 943
The thesis/dissertation has been browsed 5665 times, has been downloaded 943 times.
中文摘要
本文主要利用拉格朗日連結結構(Lagrange coherent structure, LCS)方法分析空蝕紊流流場中的動態行為。空蝕現象指的是液體在流場中,當壓力低於蒸氣壓時,流體將從液體蒸發成氣體的一個現象,其通常伴隨著噪音、震動、阻塞、破壞等情況發生,造成機械的破壞或者機械功率降低等不好的影響。而為了日後能有效的降低或利用空蝕效應,故本文將針對空蝕流場的動態行為進行研究。
本研究將採用攻角8度的Clark-Y水翼作為數值空蝕流場之幾何結構,並搭配計算流體力學軟體Fluent 14.0版本進行數值模擬,最後輔以額外撰寫的程式將數值計算之結果轉換成Finite-time Lyapunov exponent(FTLE)與拉格朗日連結結構,再透過質點追蹤將流場中不同的動態行為做一分區,藉以分析空蝕流場的複雜動態行為。
研究結果顯示,LCS結構涵蓋面積的增減能代表空蝕現象強弱的變化,此外也利用LCS結構捕捉了迴向射流的位置及動態行為,並發現水翼下表面來流會被尾部新生之逆時針渦旋吸引至水翼上表面區域內之現象,進而發現尾部反向射流的角度會隨尾部氣泡密度大小而有所偏移,因而造成尾部渦旋的消長。
Abstract
Turbulent cavitating flows are ubiquitous in our daily life and technologies, which will induce the noises, material removal, and efficiency reduction of the flow machinery. As the result, it is important to investigate the flow structures of the cavitating flow to predict its dynamical behaviors effectively. In the present study, we utilize the volume of fraction techniques to time-dependent turbulent cavitating flows.
Lagrangian Coherent Structures (LCS) have been developed to highlight the flow structures recently. It is a trajectory-basedapproach from a Lagrangian perspective by considering the fluid as a dynamical system of fluid particles rather than a continuum. This method is frame-independent and more useful to capture the dynamical features of the flows, which can be missed in the traditional Eulerian analyses based on the velocity or vorticity fields.

This dissertation utilizes the finite-time Lyapunov exponent(FTLE) and LCS to get a better understanding of the flow dynamics and underlying physics of the simulated cavitating flows for different representative phenomena during the corresponding stages. It is found that LCS can capture the re-entraint jet front and also indicate that fluid around lower surface could be attracted to the upper surface of the hydrofoil when the induced cavity grows around the trailing edge. This dissertation also analyzes the complicated flow interaction around the trailing edge when the multiple circulation and cavitation regions are formed by particle tracking method.
目次 Table of Contents
中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii
符號說明 viii
第一章 緒論 1
1.1空蝕簡介 1
1.2文獻回顧 3
1.2.1空蝕現象文獻之回顧 3
1.2.1.1熱力學性質 3
1.2.1.2實驗之觀察 4
1.2.1.3數值模擬 5
1.2.1.4空蝕效應之減低方法 6
1.2.2拉格朗日連結結構文獻之回顧 7
1.3研究動機 8
第二章 研究方法 10
2.1數學模型 10
2.2空蝕模型 11
2.3紊流模型 13
2.3.1 Filter-based model(FBM) 14
2.3.2 Density-correction-based model(DCM) 15
2.3.3 Hybrid FBM and DCM model 15
2.4數值方法 16
2.4.1計算區域與邊界條件 16
2.4.2網格測試及驗證 18
2.5拉格朗日連結結構 18
2.6空蝕現象研究流程 21
第三章 結果與討論 24
3.1數值結果與實驗之驗證 24
3.2週期氣泡各階段初步分析 25
3.3拉格朗日連結結構之解析 26
3.3.1 LCS結構之分析-A結構 27
3.3.2 LCS結構之分析-B結構 28
3.3.2.1 B結構各階段之分析 29
3.3.2.2 B結構與迴向射流之關係 32
3.3.3 LCS結構之分析-C結構 33
3.3.4 LCS結構之分析-D結構 35
第四章 結論與建議 81
4.1拉格朗日連結結構方法解析空蝕流場之結論 81
4.2未來研究建議 82
參考文獻 85
參考文獻 References
[1] 張博:亞空化非定常流動機理及動力特性研究.北京理工大學 (2009).
[2] Pardeep Kumar, R.P. Saini : Study of cavitation in hydro turbines—A review. Renewable and Sustainable Energy Reviews. Vol. 14, Issue 1, pp. 374–383 (2010).
[3] 黃振國, 陳建宏 : 門關閉引致空化的流場計算分析. 中國造船暨輪機工程學刊第三十卷第三期, pp. 171–180 (2011).
[4] Joseph, D.D.: Cavitation in a Flowing Liquid. Phys. Review E 51(3), pp. 1649-1650 (1995).
[5] Guoyu Wang, Inanc Senocak, Wei Shyy, Toshiaki Ikohagi, and Shuliang Cao : Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences 37, pp. 551–581 (2001).
[6] Jean-Baptiste Leroux, Jacques Andre Astolfi, and Jean Yves Billard : An Experimental Study of Unsteady Partial Cavitation. Journal of Fluids Engineering. J. Fluids Eng. 126(1), pp. 94-101 (2004).
[7] Wang Yi-Wei, Huang Chen-Guang, Du Te-Zhuan , Wu Xian-Qian, Fang Xin, Liang Nai-Gang and Wei Yan-Peng : Shedding Phenomenon of Ventilated Partial Cavitation around an Underwater Projectile. Chinese Phys. Lett. 29 (2012).
[8] Ji Bin, Luo Xian-Wu, Zhang Yao, Ran Hong-Juan, Xu Hong-Yuan and Wu Yu-Lin : A Three-Component Model Suitable for Natural and Ventilated Cavitation. Chinese Phys. Lett. 27 (2010).
[9] Chien-Chou Tseng, Yingjie Wei, Guoyu Wang and Wei Shyy : Modeling of turbulent, isothermal and cryogenic cavitation under attached conditions. Acta Mechanica Sinica, Vol.26, pp. 325-353 (2010).
[10] Tseng, CC. and Shyy, W. : Modeling for Isothermal and Cryogenic Cavitation. International Journal of Heat and Mass Transfer, Vol.53, pp. 513-525 (2010).
[11] Sunho Park a, Shin Hyung Rhee : Computational analysis of turbulent super-cavitating flow around a two-dimensional wedge-shaped cavitator geometry. Computers & Fluids, vol.70, pp. 73-85 (2012).
[12] Daniel H. Fruman, Jean-Luc Reboud, Beno|Ãt Stutz : Estimation of thermal effects in cavitation of thermosensible liquids. International Journal of Heat and Mass Transfer, vol.42, pp. 3195-3204 (1999).
[13] Liu Demin, Liu Shuhong, Wu Yulin and Xu Hongyuan : Numerical Analysis of Hydrofoil NACA0015'S Cavitation Characteristics Based on the Thermodynamic Effects. Modern Physics Letters B, Volume 24, Issue 13, pp. 1499-1502 (2010)
[14] Jin-ming Ye, Ying Xiong, Fang Li, Shuang-qiao Chen : Experimental study of effects of air content on cavitation and pressure fluctuations. Journal of Hydrodynamics, Ser. B Vol.22, Issue 5, pp. 634–638 (2010)
[15] J. Sauer, G. H. Schnerr : Development of a new cavitation model based on bubble dynamics. Journal of Applied Mathematics and Mechanics vol.81, pp. 561–562 (2001)
[16] Biao Huang, Guo-yu Wang, and Hai-tao Yuan, : A cavitation model for cavtating flow simulations. Journal of Hydrodynamics, Ser. B, Vol.22, pp. 798-804 (2010).
[17] ANSYS FLUENT Theory Guide. Release 14.0 (2011).
[18] Mitja Morgut, Enrico Nobile, Ignacijo Biluš, : Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. International Journal of Multiphase Flow, Vol. 37, Issue 6, pp. 620–626. (2011)
[19] S. Frikha, O. Coutier-Delgosha, and J. A. Astolfi : Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section. International Journal of Rotating Machinery, vol.2008, article ID 146234 (2008).
[20] Da-qing Li, Mikael Grekula, Per Lindell : Towards numerical prediction of unsteady sheet cavitation on hydrofoils. Journal of Hydrodynamics, Ser. B Volume 22, Issue 5, Supplement 1, pp. 741–746 (2010).
[21] Huang Biao, Wang Guo-yu : Partially average navier-Stokes method for time-dependent turbulent cavitation flows. Jounal of Hydrodynamics, vol.23, pp. 26-33 (2011).
[22] Wei-guo Zhao, Ling-xin Zhang, Xue-ming Shao and Jian Deng : Numerical study on the control mechanism of cloud cavitation by obstacles. Journal of Hydrodynamics, Ser. B Vol. 22, Issue 5, Supplement 1, pp. 792–797 (2010)
[23] Guoyu Wang, Biao Huang, and Bo Zhang, “k-ε-Based Turbulence Models For Simulation Of Cloud Cavitating Flows”, Modern Physics Letters B, Vol. 24, No. 13 (2010).
[24] Liu De-min, Liu Shu-hong, Wu Yu-lin, Xu Hong-yuan : Les Numerical Simulation of Cavitation Bubble Shedding on ALE 25 And ALE 15 Hydrfoils. Journal of Hydrodynamics, vol.21, pp. 807-813 (2009).
[25] Stein T. Johansen, Jiongyang Wu, and Wei Shyy : Filter-based unsteady RANS computations. International Journal of Heat and Fluid Flow, vol.25, pp.10-21 (2004).
[26] Ying-Jie Wei, Chien-Chou Tseng, and Guoyu Wang : Turbulence and Cavitation Models for TimeDependent Turbulent Cavitating Flows. Acta Mechanica Sinica vol.27 (2011).
[27] S. Frikha, J. A. Astolfi, O. Coutier-Delgosha : Numerical And Experimental Investigations of The Cavitating Flow on a Two-Dimensional Hydrofoil. 19ème Congrès Français de Mécanique, pp. 24-28 (2009).
[28] Jean-Baptiste Leroux, Olivier Coutier-Delgosha, and Jacques André Astolfi : A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Physics of Fluids, Vol.17 (2005).
[29] Antoine Ducoin, Biao Huang, and Yin Lu Young : Numerical Modeling of Unsteady Cavitating Flows around a Stationary Hydrofoil. International Journal of Rotating Machinery vol. 2012, 17 pages. (2012)
[30] Fengrong Yua, Lixiang Zhangb, Yun Zengb and Zhumei Luoa : Preliminary discussion for improving cavitating flow around hydrofoil by punching. International Conference on Advances in Computational Modeling and Simulation vol.31, pp. 261–266. (2012)
[31] Qiao Qin, Charles C.S. Song and Roger E.A. Arndt : A Numerical Study of an Unsteady Turbulent Wake Behind a Cavitating Hydrofoil. American Physical Society, Division of Fluid Dynamics 56th Annual Meeting, pp. 23-25 (2003).
[32] Abolfazl Asnaghi, Ebrahim Jahanbakhsh, and Mohammad Saeed Seif : Unsteady multiphase modeling of cavitation around NACA0015. Journal of Marine Science and Technology, Vol. 18, No. 5, pp. 689-696 (2010).
[33] Lindau, J.W., Venkateswaran, S., Kunz, R.F. and Merkle, C.L. : Multiphase Computations for Underwater Propulsive Flows. AIAA 2003-4105 (2003).
[34] Hoefele, E.O. and Brimacombe, J.K. : Flow regimes in submerged gas injection. Metallurgical transactions B, Vol.10, pp. 631-648 (1979)
[35] Engh, T.A. and Nilmani, M.: Bubbling at high flow rates in inviscid and viscous liquids (slags). Metallurgical transactions B, Vol.19, pp. 83-94 (1988).
[36] Loth E, Faeth G.M. : Structure of underexpanded round air jets submerged in water. International Journal of Multiphase Flow, pp. 589-603 (1989)
[37] N. Mansour, J. Kim, P. Moin : Near-wall k-epsilon turbulence modeling. AIAA Journal, Vol. 27, No. 8, pp. 1068-1073 (1989).
[38] Elert, G.: The Chaos Hypertextbook. http://hypertextbook.com/chaos/. (2007)
[39] Shadden, S. C., Lekien, F. and Marsden, J. E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212: 271-304 (2005)
[40] Ehsan Roohi Goolkhatmi, Amirpooyan Zahiri, Mahmood Pasandideh Fard : Numerical Simulation of Cavitation around a Two-Dimensional Hydrofoil Using VOF Method and LES Turbulence Model. Applied Mathematical Modelling, Vol.37, pp. 6469-6488 (2013).
[41] Huang Biao, Wang GuoYu : A modified density based cavitation model for time dependent turbulent cavitating flow computations. Chinese Science Bulletin, Vol.56 pp. 1985-1992 (2011).
[42] Jung Hee Seo, Sanjiva K. Lele : Numerical Investigation of Cloud Cavitation and Cavitation Noise on a Hydrofoil Section. Proceedings of The 7th International Symposium on Cavitation, pp. 16-20 (2009).
[43] Huang Biao, Wang Guoyu, Yu Zhiyi, and Shi Shuguo : Detached­eddy simulation for time­dependent turbulent cavitating flows. Chinese journal of Mechanical Engineering, Vol.25, pp. 484-490 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code