Responsive image
博碩士論文 etd-0730113-120416 詳細資訊
Title page for etd-0730113-120416
論文名稱
Title
飽和脂肪烴類於濁水溪流域及臺灣海峽沉積物中之分布與特徵
Distributions and Characteristics of Saturated Aliphatic Alkanes in Zhuoshui River and Taiwan Strait Sediments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-28
繳交日期
Date of Submission
2013-09-12
關鍵字
Keywords
正烷類、濁水溪、臺灣海峽、山溪型河川、生物指標
Small Mountainous River, Zhuoshui River, Taiwan Strait, Biomarkers, n-Alkanes
統計
Statistics
本論文已被瀏覽 5799 次,被下載 871
The thesis/dissertation has been browsed 5799 times, has been downloaded 871 times.
中文摘要
生物指標(biomarkers)泛指少數能夠反映環境更迭的示蹤性生源組分,而被覆於陸源植物外皮組織的蠟脂分泌物-長碳鏈正烷烴(n-C25~n-C34)亦屬之,因其各碳數(鏈長)化合物間的豐度比值表現,係伴隨植物種屬與外在環境因子的波動(如濕度與溫度)而有所差異,故可作為評估區域狀態變化的代用指標。
臺灣位處歐亞大陸板塊交接帶,在頻繁的地質作用之下,孕育了島嶼型的高山河川。然而,極端自然事件的發生(如:地震、暴雨、颱風等),加速了集水區內的地殼變動、岩層風化與河道侵蝕等改變地形地貌的作用,也使得陸源有機物質的傳輸與分佈特徵,在如此水動力機制之下,更顯複雜。本研究透過分析顆粒物質中蠟脂組分之烷烴物質,以調查臺灣中部濁水溪流域與臺灣海峽沉積物中陸源有機質之空間分佈型態的差異。
分析結果顯示,流域內土壤樣品的長碳鏈烷烴(n-C26~n-C35)幾乎保有相對濃度高值,呈現典型的陸源植物訊號,尤以n-C31與n-C29為優勢化合物。而沉積物與懸浮顆粒所含的正烷烴濃度豐值,於濁水溪主流內則多富集在短、中碳鏈(n-C16~n-C25)的區段,顯示可能受到單細胞生物(如矽藻)的影響,而使得烷烴碳數型態的變化趨勢於時空分布上略有不同。另一方面,造成烷烴數值產生較大變異的情形,還發生在溪水流經中游區的高侵蝕河段與西部麓山帶岩層時,因埋藏在岩塊中的岩石源烷烴,常伴隨著大量岩屑被挾帶沖入河川中,進而主導顆粒物質內長碳鏈烷烴的分布型式。經估算可概率得知,濁水溪下游區懸浮顆粒所攜載的n-C26-35,約有28-58%之比例係來自岩石源烷烴所貢獻。若以年輸出量表示,則每年大約有1.9-3.8 kt yr-1(0.35-0.69 Mt TOC-1 yr-1)的岩石源n-C26-35注入臺灣海峽(佔輸出的TOC比值多少?)。
臺灣海峽表層沉積物的烷烴分析資料,延續了河川內的岩石源烷烴之特徵型態,多數區域顯示出低陸源植物的訊號。在此認為,臺灣河川所輸出的岩屑物質與東海南緣所輸入的第四紀(Quaternary Period)冰期殘餘顆粒,為台灣海峽沉積物中烷烴主要的貢獻來源。
綜觀烷烴的數值分布結果,可推估由源(濁水溪流域)到匯(臺灣海峽)沉積顆粒所吸附之有機物質,有一定比例是由過去埋藏在岩層中的岩石源"老碳"所主導,亦表明臺灣西部高輸砂量的山溪型河川,在陸源有機碳傳輸的行為模式上呈現一致的現象,而與臺灣海峽正烷類有機化合物的空間分布模式無關,顯示台灣西部河川所供應的細顆粒沉積物並未廣泛的分佈在臺灣海峽。
Abstract
Vegetation changes caused by varied climatic conditions may leave fingerprint in sediments like lipids so-called molecular fossils or biomarkers. The concentration of n-alkanes and derived biological indicators (biomarkers) have been well-used on reconstructing paleoenvironment and paleoclimate variations, whereas degree of biodegradation/thermodegradation and dilutive influence from lithic organic compounds are still not constrained very well yet. In this study, we used biomarkers not only seeking for tracing sediment sources but also for reconstructing paleoenvironmental changes of source regions. For getting better understanding of the background knowledge of organic lipids and for evaluating the possibility of using biomarkers as indicators on reconstructing paleoclimatic and paleoenvironmental changes at the region of central part of Taiwan, riverine sediments, soils and rocks are recovered from the catchment of Zhuoshui River for analyzing total organic carbon and aliphatic lipids.

In soil samples, the carbon distribution pattern of n-alkanes is dominated by n-C31 and n-C29, which are typical higher plants derived signals. However, the rock samples contain only minor organic matters and no predominant carbon species are found. Our results also have shown that hydrocarbon compounds in riverine sediments and suspended particles are mainly composted of short- and medium-carbon chain alkanes (n-C16-25), which might indicate to the possible contributions from unicellular organisms (such as diatoms).
Concentrations of higher plant derived n-alkanes of surface sediments retrieved from the Taiwan Strait are low. This result indicates that there might be other sources of hydrocarbons besides the terrestrial plants and may be diluted by short-chain alkanes coming from marine organisms and lithic hydrocarbons. Therefore, we conclude that there are about 1.9-3.8 kt yr-1 (0.35-0.69 Mt TOC-1 yr-1) of rock-sourced hydrocarbons are discharged into the Taiwan Strait by Zhuoshui River.
目次 Table of Contents
致謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 ix
表目錄 xi
一、緒論 1
1.1 前言 1
1.2 研究區域 5
1.2.1 濁水溪 5
1.2.2 濁水溪流域區域地質背景 5
1.2.3 濁水溪流域氣候與水文 8
1.2.4 臺灣海峽區域背景 9
1.3 生物指標 13
1.4 植物蠟(Plant wax) 13
1.4.1 正烷烴(n-alkane) 16
1.5 正烷烴指標量化研究 19
1.6 臺灣地質環境正烷烴之研究 22
1.7 研究目的 23
二、研究材料與方法 25
2.1 樣品種類 25
2.2 研究區域內的採樣站位 25
2.3 實驗藥品 34
2.4 前處理工作 35
2.4.1 樣品前處理 35
2.4.2 實驗器材前處理 35
2.5 實驗步驟 36
2.5.1 總元素碳(TC)與總有機元素碳(TOC) 36
2.5.2 正烷烴(脂類) 37
2.6 空白與重覆試驗 39
2.6.1 空白試驗 39
2.6.2 重覆試驗 39
三、結果 42
3.1 元素碳分析結果 42
3.1.1 濁水溪流域元素碳分析結果 42
3.1.1(a) 岩塊 42
3.1.1(b) 河階發育土壤 42
3.1.1(c) 濁水溪流域土壤 43
3.1.1(d) 濁水溪流域沉積物 44
3.1.1(e)懸浮顆粒 44
3.1.2 濁水溪河口沉積物元素碳分析結果 48
3.1.3 東海南緣與臺灣海峽沉積物分析結果 49
3.2 烷烴濃度分析結果 50
3.2.1 濁水溪流域樣品 50
3.2.1(a) 河階發育土壤 50
3.2.1(b) 濁水溪流域土壤 50
3.2.1(c) 濁水溪流域沉積物與懸浮顆粒 51
3.2.2 濁水溪河口沉積物 51
3.2.3 臺灣海峽沉積物 52
3.3 烷烴參數分析結果 62
3.3.1 濁水溪流域樣品 62
3.3.1(a) 乾季(2011年1月) 62
3.3.1(b) 濕季(2011年10月) 63
3.3.2 濁水溪河口沉積物 64
3.3.3 臺灣海峽海洋沉積物 70
四、討論 73
4.1 烷烴參數指示意義的界定 73
4.1.1 n-C26-35/n-C16-35與CPI26-35 73
4.1.2 Average Carbon Chain Length (ACL) 75
4.2 濁水溪流域長鏈烷烴於時間與空間上的分布結果 75
4.2.1 濁水溪流域土壤 75
4.2.2 濁水溪流域沉積物與懸浮顆粒 79
4.2.3 濁水溪河口沉積物 85
4.3臺灣海峽長鏈烷烴於空間上的分布結果 85
4.4 臺灣海峽沉積物偶數碳優勢烷烴之分布與探討 89
4.4.1 長鏈烷烴的偶數碳分布優勢 93
4.4.2 中鏈烷烴的偶數碳分布優勢 94
4.4.3 短鏈烷烴的偶數碳分布優勢 101
五、結論 105
參考文獻 107
附錄一、正烷烴標準品檢量線與迴歸公式 122
附錄二、重覆試驗結果列表 123
附錄三、樣品烷烴濃度列表 128
附錄四、樣品烷烴萃取回收率、參數與元素碳濃度列表 144
附錄五、臺灣海峽沉積物烷烴參數空間分布圖(測站未經過濾) 154
參考文獻 References
中文文獻
巨廷工程顧問股份有限公司,(2005)。九十三年度集集攔河堰營運階段環境管理與監測總報告,經濟部水利署中區水資源局。

江崇榮、賴典章、賴慈華、黃智昭、費立沅、侯進雄、陳瑞娥、陳立貞、呂學諭、周素卿、鄂忠信、黃明昌、陸挽中、張閔翔、劉幸樺、李耀文,(1999)。濁水溪沖積扇水文地質調查研究總報告,經濟部中央地質調查所,共130頁。

宋寧,王鐵冠,李美俊,(2007)。江蘇金湖凹陷古近系奇碳優勢和偶碳優勢,沉積學報,25:307-313。

李知苡,(2001)。臺灣附近海域表層沈積物之組織、礦物與化學對比,國立臺灣大學海洋研究所碩士論文,共122頁。

李鎮鍵、蔡元融、謝正倫、邱禎龍,(2008)。濁水溪侵蝕及堆積評估模式,2008流域地質與坡地災害研討會。

林明南,(1986)。臺灣沿海魚貝類所含碳氫化合物之探討,中國文化大學海洋研究所碩士論文。

翁榮南,(1990)。生物指標的研究及其在油氣探勘之應用,石油季刊,26:1-16。

高櫻芬,(2001)。高屏溪河口與近岸海域沉積物中石由衍生性有機化合物及重金屬含量分析研究,國立中山大學海洋環境及工程研究所碩士論文,共133頁。

國立交通大學防災工程研究中心,(2006)。全省主要河川流域地質資料查核-鳯山溪及濁水溪專題報告書,經濟部水利署水利規劃試驗所,共180頁。

張瑞津,(1983)。濁水溪沖積扇河道變遷之探討,國立臺灣師範大學地理研究報告,7:85-100。

許信豐,(2000)。臺灣近代湖泊沉積物所含生物指標的分佈與其意義,國立中山大學化學系研究所碩士論文。

許惠嵐,(2011)。高屏河海系統土壤及沉積物中脂肪族碳氫化合物之分析研究,國立中山大學海洋地質及化學研究所碩士論文,共141頁。

陳明助,(1992)。臺灣東北海域沈積物有機碳同位素與有機地球化學研究,國立中山大學海洋地質研究所碩士論文,共75頁。

陳俊宏,(2010)。濁水溪上游新生河階之土壤化育初探,國立臺中教育大學科學應用與推廣學系專題研究,共54頁。

黃思恩,(2008)。以生物指標法探討過去23000年來沖繩海槽沉積物中海源和陸源輸入之研究國立臺灣海洋大學海洋環境資訊學系碩士論文,共82頁。

黃鑑水,(1996)。屈尺斷層的一些地質特性,經濟部中央地質調查所彙刊,11:13-21。

楊雍華,(2010)。利用陸源正烷類參數與不飽和烯酮類指數重建過去十萬年沖繩海槽古海洋記錄,國立中山大學海洋地質及化學研究所碩士論文,共99頁。

劉欣典,(2011)。湖泊底泥脂肪族碳氫化合物之化學分析,國立中正大學應用地球物理研究所碩士論文,共49頁。

鄭承恩,(2012)。高山湖泊底泥沉積物之脂肪族碳氫化合物化學分析,國立中正大學應用地球物理研究所碩士論文,共66頁。

盧熙日,(2013)。以濁水溪口長岩心中之生物指標紀錄 探討臺灣中部沖積平原之古環境變化,國立中山大學海洋地質及化學研究所碩士論文,共?頁。

蕭富元,(1993)。臺灣生命之河-濁水溪,遠見雜誌,88。

賴明洲,(2003)。臺灣的植物(精裝版),晨星出版社,共408頁。

謝明村,(2000)。臺灣高雄港區及其鄰近海域沉積物中石由衍生性化合物含量分佈之研究,國立中山大學海洋環境及工程研究所碩士論文,共98頁。







英文文獻
Avato, P., Bianchi, G., Salamini, F., (1985). Absence of long chain aldehydes in wax of the glossyII mutant of maize. Phytochemistry, 24, 1995-1997.

Baker, E. A., (1974). The Influence of environment on leaf wax development inBrassica oleracea var. gemmifera. New Phytologist, 73, 955-966.

Barnes, J. D., Percy, K. E., Paul, N. D., Jones, P., McLaughin, C. K., Mullineaux, P. M.,Creissen, G., Wellburn, A. R.,(1996). The influence of UV-B radiation on the physiochemical nature of tobacco (Nicotiana tabacumL.) leaf surfaces. Journal of Experimental Botany, 47,99-109.

Barnes, M. A., Barnes, W. C., (1978). Organic compounds in lake sediments. In: Lerman, A. (Ed.), Lakes: Chemistry, Geology, Physics; Springer-Verlag, Berlin, 127-152.

Barthlott, W., Neinhuis, C., (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1-8.

Bergman, D. K., Dillwith, J. W., Zarrabi, A. A., Caddel, J. L., Berberet, R. C., (1991). Epicuticular lipids of alfalfa relative to its susceptibility to spotted alfalfa aphids (Homoptera aphididae). Environmental Entomology, 20, 781-85.

Blumer, M., Mullin, M. M., Thomas, D. W., (1964). Pristane in the marine environment. Helgoland Marine Research, 10, 187-201.

Boggs, S., Wang, W. C., Lewis, F. S., Chen, J. C., (1979). Sediment properties and water characteristics of the Taiwan shelf and slope. Acta Oceano Taiwanica, 10, 10-49.

Bondada, B. R,, Oosterhuis, B. M., Murphy, J. B., Kim, K. S., (1996). Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Environmental and Experimental Botany, 36, 61-69.

Bouloubassi, I., Fillaux, J., Saliot, A., (2001). Hydrocarbons in surface sediments from the Changjiang (Yangtze river) estuary, East China Sea. Marine Pollution Bulletin, 42, 1335-1346.

Brassel, S. G., Eglinton, G., Maxell, J. R., Philip, R. D., (1978). Natural background of alkanes in the aquatic environment. In: Hutzinger, O., Van Lelyveld, I. H., Zoetman, B. C. J. (Eds.), Aquatic Pollutants, 1, Pergamon Publishers, Oxford , 11-23.

Brassell, S. C., Eglinton, G., (1983). The potential of organic geochemical compounds as sedimentary indicators of upwelling. In: Suess, E., Thiede, J. (Ed.). Coastal Upwelling, Its Sedimentary Record; Plenum Press, New York. 545-571.

Bray, E. E., Evans, E. D., (1961). Distribution of n-paraffins as a clue to the recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2-15.

Brooks, J. D., Gould, K., Smith, J., (1969). Isoprenoid hydrocarbons in coal and petroleum. Nature, 222, 257-259.

Chen, Z. Y., Song, B. P., Wang, Z. H., Cai , Y. L., (2000). Late Quaternary evolution of the sub‐aqueous Yangtze Delta, China: Sedimentation, stratigraphy, palynology, and deformation. Marine Geology, 162, 423-441.

Chernova, T. G., Il'inskaya, V. I., Nechitaylo, G. G., (1992). Evolution of organic matter in the sediments of the Guaymas Basin in the presence of hydrothermal activity. Russian Academy of Sciences. Oceanology, 32, 315-319.

Clark Jr., R. C., Blumer, M., (1967). Distribution of n-Paraffins in Marine Organisms and Sediment. Limnology and Oceanography, 12, 79-87.

Clark, K. E., Hilton, R. G., West, A. J., Malhi, Y., Gröcke, D. R., Bryant, C. L., Ascough, P. L., New, M., (2013). New views on “old” carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes. Geochemistry, Geophysics, Geosystems, 14, 1644-1658.

Cranwell, P. A., (1973). Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 3, 259-265.

Cranwell, P. A., (1984). Lipid geochemistry of sediments from Upton Broad, a small productive lake. Organic Geochemistry, 7, 25-37.

Dai, X. Y., Ping, C. L., Michaelson, G. J., (2002). Characterizing soil organic matter in Arctic tundra soils by different analytical approaches. Organic Geochemistry, 33, 407-19.

DeMaster, D. J., McKee, B. A., Nittrourer, C. A., Qian, J. C., Chen, G. D., (1985). Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 4, 143-158.

Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., Eglinton, G., (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216-222.

Dodd, R. S., Rafii, Z. A., Power, A. B., (1998). Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition. New Phytologist, 138, 699-708.

Drenzek, N. J., Hughen, K. A., Montluçon, D. B., Southon, J. R., dos Santosk,G. M., Druffelk, E. R. M., Giosan, L., Eglinton, T. I., (2009). A new look at old carbon in active margin sediments. Geology, 37, 239-242.

Eglinton, G., Calvin, M., (1967). Chemical fossils. Scientific American, 261, 32-43.

Eglinton, G., Hamilton, R. J., (1967). Leaf epicuticular waxes. Science, 156, 1322-1335.

Elias, V. O., Simoneit, B. R. T., Cardoso, J. N., (1997). Even n-alkanes predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften, 84, 415-420.

Fehling, E., Mukherjee, K. D., (1991). Acyl–CoA elongase from a higher plant (Lunaria annua): Metabolic intermediates of verylong-chain acyl–CoA products and substrate specificity. Biochimica et Biophysica Acta, 1082, 239-246.

Galy, V., Eglinton, T., (2011). Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin. Nature Geoscience, 4, 843-847.

Garg, A., Bhosle, N., (2004). Abundance of macroalgal organic matter in biofilms: evidence from n-alkane biomarkers. Biofouling, 20, 155-165.

Gelpi, E., Schneider, H., Mann, J., Oro, J., (1970). Hydrocarbons of geochemlcal significance in microscopic algae. Fhytochemistry, 9, 603-612

Giese, B. N., (1975). Effects of light and temperature on the composition of epicuticular wax of barley leaves. Phytochemistry, 14, 921-929.

Goldsmith, S. T., Carey, A. E., Lyons, W. B., Kao, S. J., Lee, T. Y., Chen, J., (2008). Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36, 483-486.

Goossens, H., Duren, R. R., de Leeuw, J. W., Schenck, P. A., (1989). Lipids and their mode of occurrence in bacteria and sediments—II. Lipids in the sediment of a stratified, freshwater lake. Organic Geochemistry, 14, 27-41.

Grandy, A. S., Neff, J. C., (2008). Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment, 404, 297-307.

Grimalt, J., Albaiges, J., Al Saad, H. T., Douabul, A. A. Z., (1985). n-Alkane distributions in surface sediments from the Arabian Gulf. Naturwissenschaften, 72, 35-37.

Grimalt, J., Albaigés, J., (1987). Sources and occurrence of C12-C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51, 1379-1384.

Han, J., McCarthy, E. D., Van Hoeven, W., Calvin, M., Bradley, W. H., (1968). Organic geochemical studies, II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proceedings of the National Academy of Sciences (USA), 59, 29-33.

Hannoufa, A., Mcnevin, J., Lemieux, B., (1993). Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry, 33, 851-55.

Hilton, R. G., Galy, A., Hovius, N., Chen, M. C., Horng, M. J., Chen, H., (2008). Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature Geoscience, 1, 759-762.

Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., Chen, H., (2010). The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta, 74, 3164-3181.

Hilton, R. G., Galy, A., Hovius, N., Horng, M. J., Chen, H., (2011). Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism. Geology, 39, 71-74.

Hu, L., Guo, Z., Feng, J., Yang, Z., Fang, M., (2009). Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Marine Chemistry, 113,197-211.

Huh, C. A., Chen, W. F., Hsu, F. H., Su, C. C., Chiu, J. K., Lin, S., Liu, C. S., Huang, B. J., (2011). Modern (< 100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size disttibution. Continental Shelf Research, 31, 47-63.

Horng, C. S., Huh, C. A., (2011). Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait. Earth and Planetary Science Letters, 309, 141-152.

Hovius, N., Galy, A., Hilton, R. G., Sparkes, R., Smith, J., Kao, S. J., Chen, H., Lin, I. T., West, A. J., (2011). Erosion-driven drawdown of atmospheric carbon dioxide: the organic pathway. Earth and Planetary Science Letters, 304, 347-55.

Ittekkot, V., (1988). Global trends in the nature of organic-matter in river suspensions. Nature, 332, 436-438.

Jeng, W. L., (1981). Aliphatic Hydrocarbons in River and Estuarine Sediments of Western Taiwan. Acta Oceanographica Taiwanica, 12, 16-27.

Jeng, W. L., Kao, S. J., (2002). Lipids in suspended matter from the human-disturbed Lanyang River, northeastern Taiwan. Environmental Geology, 43, 138-144.

Jeng, W. L., Lin, S., Kao, S. J., (2003). Distribution of terrigenous lipids in marine sediments off northeastern Taiwan . Deep-Sea Research Part II, 50, 1179-1201.

Jeng, W. L., Huh, C. A., (2004). Lipids in suspended matter and sediments from the East China Sea Shelf. Organic Geochemistry, 35, 647-660.

Jeng, W. L., (2006). Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments, Marine Chemistry, 102, 242-251.

Jeng, W. L., Huh, C. A., (2006). A comparison of sedimentary aliphatic hydrocarbon distribution between the southern Okinawa Trough and a nearby river with high sediment discharge. Estuar Coast ans Shelf Science, 66, 217-224.

Jeng, W. L., (2007). Aliphatic hydrocarbon concentrations in short sediment cores from the southern Okinawa Trough: Implications for lipid deposition in a complex environment. Continental Shelf Research, 27, 2066-2078.

Jeng, W. L., Huh, C. A., (2008). A comparison of sedimentary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough. Continental Shelf Research, 28, 582-592.

Jenks, M. A., Tuttle, H. A., Eigenbrode, S. D., Feldmann, K. A., (1995). Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol, 108, 369-77.

Kandeler, E., Stemmer, M., Klimanek, E. M., (1999). Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry, 31, 261-73.

Kao, S. J., Liu, K. K., (1996). Particulate organic carbon export from a subtropical mountainous river (Lanyang-Hsi) in Taiwan. Limnology and Oceanography, 41, 1749-1757.

Kao, S. J., Milliman, J. D., (2008). Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events and Human Activities. The Journal of Geology, 116, 431-448.

Kao, S. J., Jan, S., Hsu, S. C., Lee, T. Y., Dai, M., (2008). Sediment budget in the Taiwan Strait with high fluvial sediment inputs from mountainous rivers: new observations and synthesis. Terrestrial, Atmospheric and Oceanic Sciences, 19, 525-546.

Kerstiens, G., (1996). Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. In: Kerstiens, G. (Ed.), Plant Cuticles: an Integrated Functional Approach; BIOS Scientific Publishers, Oxford, 121-134.

Kerstiens, G., (1996). Signalling across the devide: a wider perspective of cuticular structure-function relationship. Trends in Plant Scencei, 1, 125-129.

Killops, S., Killops, V., (2005). Introduction to organic geochemistry; Blackwell, USA.

Kolattukudy, P. E., (1980). Cutin, suberin, and waxes. In: Stumpf, P. K., Conn, E. E. (Eds.), The Biochemistry of Plants; 4, Academic, New York, 571-645.

Kolattukudy, P. E., (1985). Enzymatic penetration of the plant cuticle by fungal pathogens. Annual Review Phytopathology, 23, 223-250.

Komada, T., Druffel, E. R., Hwang, J., (2005). Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes. Global biogeochemical cycles, 19, GB2017.

Kunst, L., Samuels, A. L., (2003). Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42, 51-80.

Li, M. W., Larter, S. R., Taylor, P., Jones, D. M., Bowler, B., Bjorøy, M., (1995). Biomarkers or not biomarkers? A new hypothesis for the origin of pristine involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols. Organic Geochemistry, 23, 159-167.

Li, Y. H., (1976). Denudation of Taiwan Island since the Pliocene Epoch. Geology, 4, 105-107.

Liao, H. R., Yu, H. S., Su, C. C., (2008). Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan Strait. Marine Geology, 248, 161-178.

Lin, S., Hsieh, I. J., Huang, K. M., Wang, C. H., (2001). Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 182, 377-394.

Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., Lin, S. W., (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256, 65-76.

Liu, J. T., Kao, S. J., Huh, C. A., Hung, C. C., (2013). Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of Marine Science, 5, 47-68.

Lü, X., Zhai, S., (2006). Distributions and sources of organic biomarkers in surface sediments from the Changjiang (Yangtze River) Estuary, China. Continental Shelf Research, 26, 1-14.

Lu, C. S., Lu, S. Y., Lallemand, S. E., Lundberg, N., Reed, D. L., (1998). Digital elevation model offshore Taiwan and Its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 9, 705-738.

Lyons,W. B., Nezat, C. A., Carey, A. E., Hicks, D. M., (2002). Organic carbon fluxes to the ocean from high-standing islands. Geology, 30, 443-446.

Lytle, J. S., Lytle, T. F., Gearing, J. N., Gearing, P. J., (1979). Hydrocarbons on benthic algae from the eastern Gulf of Mexico. Marine Biology, 51, 279-288.

Martin, J. T., Juniper, B. E., (1970). The cuticles of plants; Arnold, London.

Mead, R., Xu, Y., Chong, J., Jaffe´, R., (2005). Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon composition of n-alkanes. Organic Geochemistry, 36, 363-370.

Meybeck, M., (1993). Interactions of C, N, P and S Biogeochemical Cycles and Global Change; Springer-Verlage, 163-193.

Millar, A. A., Clemens, S., Zachgo, S., Giblin, E. M., Taylor, D. C., Kunst, L., (1999). CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. The Plant Cell, 11, 825-838.

Milliman, J. D., Farnsworth, K. L., (2011). River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press.

Milliman, J. D., Meade, R. H., (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, 91, 1-21.

Mironov, O. G., Shchekaturina, T. L., Tsimbal, I. M., (1981). Saturated Hydrocarbons in marine organisms. Marine Ecology Progress Series, 3, 303-309.

Nishimura, M., Bake, E. W., (1986). Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochimica et Cosmochimica Acta, 50, 299-305.

Ogura, K., Machihara, T., Takada, H., (1990). Diagenesis of biomarkers in Biwa lake sediments over 1 million years. Organic Geochemistry, 16, 805-813.

Oro, J., Tornabene, T. G., Nooner, D. W., Gelpi, E., (1967). Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. Journal of Bacteriology, 93, 1811-1818.

Peltzer, E. T., Gagosian, R. B., (1989). Organic geochemistry of aerosols over the Pacific Ocean. In: Riley, J. P., Chester, R., Duce, R. A. (Eds.), Chemical Oceanography; Academic Press, London, 10, 281-328.

Philp, R. P., (1985). Fossil fuel biomarkers, applications and spectra; Elsevier, New York.

Post-BeittenmUler, D., (1996). Biochemistry and molecular biology of wax production in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 405-430.

Powell, T. G., McKirdy, D. M., (1973). Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature, 243, 37-39.

Poynter, J., Eglinton, G., (1990). Molecular composition of three sediments from hole 717C: The Bengal fan. Proceedings of the Ocean Drilling Program, Scientific Results, 116, 155-161.

Reicosky, D. A., Hanover, J. W., (1978). Physiological effects of surface waxes. Plant Physiology, 65, 101-104.

Rieley, G., Collier, R.J., Jones, D.M., Eglinton, G., (1991). The biogeochemistry of Ellesmere Lake, U.K.-Ⅰ: source correlation of leaf wax inputs to the sedimentary record. Organic Geochemistry, 17, 901-912

Risatti, J. B., Rowland, S. J., Yon, D. A., Maxwell, J. R., (1984). Stereochemical studies of acyclic isoprenoids, XII. Lipids of methanogenic bacteria and possible contributions to sediments. In: Schenck, P.A., , de Leeuw, J. W. (Eds.), Advances in Organic Geochemistry. Pergamon, Oxford, 93-104.

Rommerskirchen, F., Eglinton, G., Dupont, L., Günter, U., Wenzel, C., Rullkötter, J., (2003). A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochemistry Geophysics Geosystems, 4, 1-29.

Rowland, S. J., (1990). Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Organic Geochemistry, 15, 9-16.

Sachse, D., Radke, J., Gleixner, G., (2006). δD values of individual n-alkanes from terrestrial plants along a climatic gradient Implications for the sedimentary biomarker record. Organic Geochemistry, 37, 469-483.

Schimel, J. P., Weintraub, M. N., (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35, 549-63.

Schlünz, B. and Schneider, R. R., (2000). Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates. International Journal of Earth Sciences, 88, 599-606.

Seki, O., Nakatstsuka, T., Shibata, H., Kawamura, K., (2010). A compound-specific n-alkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. Geochimica et Cosmochimica Acta, 74, 599-613.

Shelvey, J. D., Koziol, M. J., (1986). Seasonal and SO2 induced changes in epicuticular wax of ryegrass. Phytochemistry, 25, 415-420.

Shepherd, T., Wynne Griffiths, D., (2006). The effects of stress on plant cuticular waxes. New Phytologist, 171, 469-499.

Shepherd, T., (2003). Wax pathways. In: Thomas, B., Murphy, D. J., Murray, B. G. (Eds.), Encyclopedia of applied plant sciences, Elsevier, Oxford, UK, 1204-1225.

Simoneit, B. R. T., (1977). The Black Sea, a sink for terrigenous lipids. Deep-Sea Research, 24, 813-830.

Stallard, R. F., (1998). Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 12, 231-257.

Sutter, E., (1984). Chemical composition of epicuticular wax in cabbage plants grown in vitro. Canadian Journal of Botany, 62, 74-77.

Ten Haven, H. L., Baas, M., de Leeuw, J. W., Schenck, P. A., (1987). Late Quaternary Mediterranean sapropels, I-On the origin of organic matter in sapropel S7. Marine Geology, 75, 137-156.

Tissot, B., Welte, D. H., (1984). Petroleum Formation and Occurrence. 2nd; Springer-Verlage, New York.

Versteegh, G. J. M., Schefuß, E., Dupont, L., Marret, F., Sinninghe-Damst’e, J. S., Jansen, J. H. F., (2004). Taraxerol and Rhizophora pollen as proxies for tracking pas mangrove ecosystem. Geochimica et Cosmochimica Acta, 68, 411-422.

Viso, A. C., Pesando, D., Bernard, P., Marty, J. C., (1993). Lipid components of the Mediterranean seagrass Posidonia Oceanica. Phytochemistry, 34, 381-387.

Walton, T. J. (1990) Waxes, cutin and suberin. In: Harwood, J. L., Bowyer, J. R. (Eds.), Methods in Plant Biochemistry: Lipids, Membranes and Aspects of Photobiology. 4, Academic, San Diego, 105-58.

Wang, X. C., Sun, M. Y., Li, A. C., (2008). Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) estuarine and East China Sea shelf sediments. Journal of Oceanography, 64, 311-321.

Welte, D. H., Ebhardt, G., (1968). Distribution of long chain nparaffins and n-fatty acids in sediments from the Persian Gulf. Geochimica et Cosmochimica Acta, 32, 465-466.

Wiesenberg, G. L. B., Lehndorff, E., Schwark , L., (2009). Thermal degradation of rye and maize straw: lipid pattern changes as a function of temperature. Organic Geochemistry, 40, 167-174.

Winters, K., Parker, P. L., Van Baalen, C., (1969). Hydrocarbons of blue-green algae: geochemical significance. Science, 158, 467-468.

Wu, F. T., (1970). Focal mechanisms and tectonics in the vicinity of Taiwan. Bulletin of the Seismological Society of America, 60, 2045-2056.

Xu, K. H., Milliman, J. D., Li, A. C., Liu, J. P., Kao, S. J., Wan, S. M., (2009). Yangtze- and Taiwan-derived sediments in the inner shelf of East China Sea. Continental Shelf Research, 29, 2240-2256.

Yamamoto, M., Polyak, L., (2009). Changes in terrestrial organic matter input to the Mendeleev Ridge, western Arctic Ocean, during the Late Quaternary. Global and Planetary Change, 68, 30-37.

Yang, G., Espelie, K. E., Todd, J. W., Culbreath, A. K., Pittman, R. N., Demski, J. W., (1993). Cuticular lipids from wild and cultivated peanuts and the relative resistance of these peanut species to fall armyworm and thrips. Journal of Agricultural and Food Chemistry, 41, 814-818.

Zhou, W., Xie, S., Meyers, P. A., Zheng, Y., (2005). Reconstruction of late glacial and Holocene climate evolution in Southern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 36, 1272-1284.

Zhu, C., Wagner, T., Pan, J. M., Pancost, R. D., (2011). Multiple sources and extensive degradation of terrestrial sedimentary organic matter across an energetic, wide continental shelf. Geochemistry Geophysics Geosystems, 12, 1-18.


網路資料
文化部臺灣大百科-臺灣海峽
(http://taiwanpedia.culture.tw/web/content?ID=1459)

經濟部水利署/河川生態主題網/河岸及濱溪植物
(http://www.e-river.tw/e_Ecology/p3-2.aspx)

經濟部水利署/河川-濁水溪/地形
(http://www.e-river.tw/E_theme/eriver_index_a01_c_2_e.aspx?name=10)

經濟部水利署-臺灣水文年報(電子書)
(http://gweb.wra.gov.tw/wrhygis/)

農田水利入口網站-彰化水利會
(http://doie.coa.gov.tw/about/about.asp?uc=chia)

臺灣河川復育網-中央管河川-濁水溪
(http://trrn.wra.gov.tw/trrn/ecologySpecies/view.do?area=2&id=12bf5f1f92200000b53b)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code