Responsive image
博碩士論文 etd-0730113-150756 詳細資訊
Title page for etd-0730113-150756
論文名稱
Title
使用線上複合電鍍與電解銳化法對鑽石膜及碳化矽研磨特性之研究
Studies on the Grinding Characteristics of Diamond Film and SiC using Composite Electro-Plating and Electrolyzing In-process Sharpening Methods.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-08-30
關鍵字
Keywords
脈衝電流、碳化矽、線上複合電鍍銳化研磨法、CVD鑽石膜、超精密加工
CEPIS, CVD diamond film, Ultra-precision machining, Pluse current, SiC
統計
Statistics
本論文已被瀏覽 5677 次,被下載 398
The thesis/dissertation has been browsed 5677 times, has been downloaded 398 times.
中文摘要
線上複合電鍍銳化(CEPIS)研磨法為對磨盤於加工工件之際,
同時進行複合電鍍。然而採用CEPIS法會造成鍍層厚度成長不易控制。
為了克服此問題,導入正反向脈衝電流,對磨盤進行複合電鍍與電解
銳化,來加工鑽石膜及碳化矽。而此方法稱為線上複合電鍍與電解銳
化(CEPELIS)研磨法。
由實驗結果可知,在電流密度為4.5 ASD,正反向脈衝電流下,隨
著反向脈衝時間的增加,鍍層結構較鬆散,鍍層成長速度較慢,鑽石
膜粗糙度下降慢。當反向脈衝時間為1500 μs,採用兩階段式CEPELIS
研磨法來加工鑽石膜,第一階段使用粒徑為10 μm 的鑽石磨粒對鑽石
膜加工120 分鐘之後,第二階段採用3 μm 進一步精加工120 分鐘。最
終可得到鑽石膜粗糙度為0.05 μm 的類鏡面鑽石表面且磨盤表面鍍層
厚度僅微成長。而加工碳化矽方面,磨盤表面鍍層可於正反向脈衝條
件下,近乎零成長且可得到表面粗糙度為0.06 μm 的類鏡面。
Abstract
The Composite electro-plating in-process sharpening (CEPIS) method
is employed to sharpen the grinder during the grinding process. However,
the coating thickness using CEPIS method is always increasing. To
overcome this disadvantage, the pluse reverse current with off time is
applied to this method to grind the SiC and the diamond film, and it is
called the Composite electro-plating and electrolyzing in-process
sharpening (CEPELIS) method.
Experiment results show that, when the reverse-pluse time increases,
the growth rate of the coating film in the grinder becomes slower and
looser and the roughness of the diamond fi lm is decreased slowly at the
current density of 4.5 ASD. A two-stage CEPELIS method at reverse-pluse
time of 1500 μs is used to grind the CVD diamond film. In this first stage, a
grit size of 10 μm is used to conduct CEPELIS grinding for 120 min, and
then the grit size of 3 μm for 120 min. Finally, a mirror-like surface on the
diamond film with an surface roughness of 0.05 μm is obtained, and the
growth rate of the coating film is slightly increased. On the other hand, the
coating thickness can be maintained constant in grinding SiC process at
highter operating range. In addition, a mirror-like surface of SiC with an
average surface roughness of 0.06 μm can be obtained.
目次 Table of Contents
學位論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 前 言 1
1-2 文獻回顧 2
1-3 研究目的 6
第二章 理論基礎 7
2-1 電鍍 7
2-2 極化 7
2-3 電雙層 8
2-4 鍍液組成 9
2-5 常見的鍍液種類 10
2-6 電鍍的影響因素 11
2-7 複合電鍍 12
2-8 複合電鍍機制 12
第三章 實驗設備與方法 15
3-1 實驗設備 15
3-1-1 複合電鍍電解系統 17
3-1-2 循環攪拌系統 17
3-1-3 研磨加工系統 17
3-2 磨盤幾何形狀及前處理 18
3-2-1 磨盤的幾何形狀 18
3-2-2 磨盤的前處理 19
3-3 試片的幾何形狀及前處理 20
3-3-1 鑽石膜試片的幾何形狀 20
3-3-2 碳化矽試片的幾何形狀 20
3-3-3 試片的前處理 21
3-4 量測儀器 21
3-5 實驗步驟 21
3-6 實驗流程 23
第四章 結果與討論 24
4-1 使用複合電鍍與電解法加工CVD鑽石膜 24
4-1-1 不同正向脈衝時間對鍍層厚度的影響 27
4-1-2 不同脈衝時間對陽極消耗的影響 28
4-1-3 脈衝條件對鍍層厚度及鑽石膜加工能力之影響 29
4-1-4 加工後的磨盤表面狀態 38
4-1-5 兩階段式線上複合電鍍銳化與電解法加工鑽石膜 45
4-2 使用複合電鍍銳化法加工碳化矽 48
4-2-1 使用CEPIS法加工碳化矽對磨盤厚度的影響 49
4-2-2 使用CEPIS法對碳化矽表面粗糙度變化之影響 50
4-2-3 使用CEPIS法加工碳化矽後的磨盤表面狀態 54
4-3 使用複合電鍍與電解法加工碳化矽 56
4-3-1正反向脈衝電流對鍍層厚度及碳化矽加工能力之影響 57
4-3-2正反向脈衝電流對磨盤表面鍍層的銳化特性 60
第五章 結論與未來研究方向 63
5-1 結論 63
5-2 未來研究方向 64
參考文獻 66
參考文獻 References
[1] P. Voillot,“鑽石與寶石”,時報文化出版企業股份有限公司,2002。
[2] 宋健民,鑽石合成,全華科技圖書股份有限公司,2000。
[3] J. E. Field, The Properties of Diamond, Academic Press, London, 1979.
[4] Y. C. Chiou, R. T. Lee and C. L. Yau, “A Novel Method of Composite Electroplating on Lap in Lapping Process”, International Journal of Machine Tools and Manufacture, vol.47, 2007, 361-367.
[5] T. J. Chen, R. T. Lee and Y. C. Chiou, “Sharpening mechanism using composite electro-plating in-process sharpening technique”, Advanced Materials Research, vol.126-128, 2010, 633-638
[6] T. J. Chen, Y. C. Chiou and R. T. Lee, “Grinding characteristics of diamond film using composite electro-plating in-process sharpening method”, International Journal of Machine Tools and Manufacture, Vol.49, 2009, 470-477
[7] H. Ohmori, T. Nakagawa, “Mirror suface grinding of Silcon wafers with electrolytic in-process dressing”, CIRP Annals-Manufacturing Technology, vol.39, 1990, 329-332.
[8] F. H. Zhang, Z. J. Qiu, G. W. Kang, Z. J. Yuan, Y. S. Yang and X.K. Shi, “High efficiency ELID grinding of garnet ferrite”, Journal of Materials Processing Technology, Vol.129, 2002, 41-44.
[9] H. Ohmori, I. Takahashia and B.P. Bandyopadhyay, “Ultra-precision grinding of gtructural ceramics by electrolytic in-process dressing (ELID) grinding”, Journal of Materials Processing Technology, Vol. 57, 1996, 272-277.
[10] H. S. Lim, K. Fathima, A. Senthil and M. Rahman, “A Fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding”, International Journal of Machine Tools and Manufacture, Vol.42, 2002, 935-943.

[11] K. Fathima, A. Senthil, M. Rahman and H.S. Lim, “A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding”, Wear, Vol.254, 2003, 1247-1255.
[12] H. Ohmori, K. Katahira, Y. Uehara, Y. Watanabe and W. Lin, “Improvement of mechanical strength of micro tools by controlling surface characteristics”, CIRP Annals-Manufacturing Technology, Vol. 52, 2003, 467-470.
[13] H. Lee, H. Kasuga, H. Ohmori, H. Lee and H. Jeong, “Application of electrolytic in-process dressing (ELID) grinding and chemical mechanical polishing (CMP) process for eemerging hard–brittle materialsused in light-emitting diodes”, Journal of Crystal Growth, Vol.209, 2011, 140-146.
[14] H. S. Lim, K. Fathima, A. Senthil Kumar and M. Rahman, “ A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding, International Journal of Machine Tools and Manufacture”, Vol.42, 2002, 935-943.
[15] T. Semba and H. Sato, “Development of electroformed diamond tool with fine grains covered with metal oxide coating, CIRP Annals-Manufacturing Technology”, Vol. 49, 2000, 157-160.
[16] D. Thiemig, R. Lange, A. Bund, “Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites”, Electrochimica Acta, Vol.52, 2007, 7362-7371.
[17] 蘇揆陽編,“實用電鍍理論與實際”,復文出版社,1999。
[18] 宋仰恆,“鍍鎳的理論與實務”,徐式基金會,1980。
[19] 李鴻年,“實用電鍍工藝”,國防工業出版社,1993。
[20] D. R. Brown and F. W. Salt, “The mechanism of electrophoretic deposition”, Journal of Applied Electrochemistry, Vol. 40, 1965,40-48.
[21] R. V. Williams, “Electrodeposition of Composite Materials”, Metal Finishing Journal, Vol.11, 447-451, 1965.
[22] T. W. Tomazewski, L. C . Tomazewski and H. Brown, “Codeposition of finely dispersed particles with metals”, Plating, Vol.57, 1234-1239, 1969.
[23] N. Guglielmi, “Kinetics of the depositions of the institute of inert particles from electrolytic bath”, Journal of the Electrochemical Society, Vol.119, 1009-1012, 1972.
[24] J. P. Celis, J. R. Roos and C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix”, Journal of the Electrochemical Society, Vol. 134, 1402-1408, 1987.
[25] J. Fransaer, J. P. Celis, J. R. Roos,”Analysis of the electrolytic codeposition of Non-brownian Particles with metals”, Journal of the Electrochemical Society, Vol. 139,413-425, 1992.
[26] J. P. Celis, J. R. Roos, C. Buelens and J. Fransaer, “Mechanism of Electrolytic Codeposition Composite Plating: Survey and Trends”, Transactions of the Institute of Metal Finishing, Vol. 69, 133-139, 1991.
[27] J. P. Celis and J. Fransear, “Composite Coatings – New Insight Leading to Improved process control”, Transactions of the Institute of Metal Finishing, Vol.75, 118-121, 1997.
[28] N. V. Mandich, “Pluse and pulse-reverse electroplating”, Metal Finish, Vol.97, 382-387, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code