Responsive image
博碩士論文 etd-0730113-162539 詳細資訊
Title page for etd-0730113-162539
論文名稱
Title
潮汐機制影響下濁水溪河口懸浮顆粒特性之變化
Tide-Related Variability of Suspended Particles Characteristics off the Mouth of Zhoushui River
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-14
繳交日期
Date of Submission
2013-09-02
關鍵字
Keywords
顆粒沉降速度、生物性顆粒、沖淡水、紊流、絮凝作用、潮汐、鹽度、經驗正交函數
particle settling velocity, turbulence, tide, flocculation, salinity, biological particle, River plume, EOF
統計
Statistics
本論文已被瀏覽 5838 次,被下載 770
The thesis/dissertation has been browsed 5838 times, has been downloaded 770 times.
中文摘要
水體懸浮顆粒於河口近岸環境當中,往往扮演著攜帶著有機物和重金屬離子的載具角色。因此為了要能理解這些載體的命運,對於載具特性的了解,則具有一定程度的必要性。根據前人研究,水體懸浮顆粒特性主要會受到 (1) 顆粒水體間之交互作用,(2) 底邊界層的效應,以及 (3) 生物性的轉化作用影響。而於河口和近岸環境當中,這些因子往往又會受到來自陸源的沖淡水影響,使本身之性質具有不同的變化,進而間接或直接性的影響水中懸浮顆粒的特性。所以,為了要能理解水體懸浮顆粒特性,在受到沖淡水和動力作用的影響之下,其變化原因和機制,本研究選擇在台灣濁水溪河口近岸,進行了定點連續性的觀測。
觀測的時間從2012年7月6日至同年的7月9日,研究方法為每兩小時下放一次搭載著LISST-100X的CTD Rosette,進行現場水樣的採集和水文剖面的量測,並於研究船上利用多層網目過濾系統 Catnet,將水樣中的顆粒過濾成四個不同粒徑的群組。除此之外,研究船旁還繫著搭載AQUAdopp流速剖面儀的浮筒,同步記錄濁水溪河口近岸區域流場剖面的變化。
根據此次的實驗結果,濁水溪河口近岸區域由於受到了強烈的半日潮作用影響,使得水體中的水文性質和懸浮顆粒特性有著潮汐週期性的變化。當觀測位置受到高鹽的海洋環境影響時,表層的水體懸浮顆粒主要是以細顆粒 ( < 10 μm、10 ~ 63 μm) 所組成,SSC 約為 10 mg/l。當濁水溪沖淡水到達至觀測位置後,表層SSC則可增加至40 mg/l ~ 60 mg/l,且水體懸浮顆粒是以體積較大,但重量較輕的生物性顆粒和絮凝顆粒型式存在。除此之外,當觀測位置於沖淡水鋒面處時,由於受到流場間的輻合作用影響,水體中的絮凝體會因破裂而產生容積密度較高的懸浮顆粒。本研究利用了 EOF 分析,探討了沖淡水對於水文性質和懸浮顆粒特性三種不同的影響機制。且根據 Stokes Law 的估算,顆粒沉降速度在 > 153 μm 粒徑的部分,至少會大於 0.314 mm/s;在 63 ~ 153 μm 的部分,至少會小於 12.001 mm/s;在 10 ~ 63 μm 的部分,會小於 1.139 mm/s;在 < 10 μm 的部分,則至少會小於 0.138 mm/s;總體顆粒沉降速度的範圍則為0.54 ~ 30.93 mm/s。
Abstract
The suspended particles always play an important role as a carrier of organic carbon and heavy metals in the nearshore area and around the river mouth. Therefore, to understand how the carriers control the fate of these carried substances, we need to understand the variation of suspended particle characteristics.
According to previous studies, the nature of suspended particle properties would be influenced by three factors, which are water-particle interaction, boundary layer effect, and biotransformation. The feature of these factors also would be changed by the river plume, under different hydrodynamic conditions. The physical process would affect the particle characteristics directly or indirectly, making the physical and biogeochemical process more complex. Consequently, we heired R/V Ocean Researcher III and conducted a field experiment from July 6 to July 9, 2012 to focus on the temporal variations of the suspended sediment characteristics and fators that influence them at a fixed location off the Zhuoshui River mouth, Taiwan.
The CTD rosette was deployed with a laser in-situ scattering and transmissometry (LISST) to record the hydrographic profile (salinity, temperature, fluorescence, and volume concentration of suspended particle) and near-surface water samples (taken at 3 m depth). These samples were filtered onboard by Catnet (a nested filtration system) to separate the particle into four different grain-size classes. In addition, a floating platform was tethered to the research vessel on which a downward-looking ADCP (AQUAdopp, 1200 kHz) was mounted for measuring the current velocity during this experiment.
The results indicated the tidally modulated fluctuation of the river plume off the mouth of the Zhuoshui River is the most important factor controlling the water column stability and characteristics of the suspended sediment. In the ambient seawater condition, the surface particle consisted of the fine-grained size-classes (< 10 μm、10 ~ 63 μm). The SSC value was about 10 mg/l, and sometimes increased via the resuspension process by the tidal current. In the river plume regime, the SSC value could reach 40 mg/l ~ 60 mg/l, and the surface particles presented a status of fluffyness which means heavily large volume but less weight and that was consisted of bio-particle and flocs. In addition, the flocs were likely broken due to the turbulence in the convergent zone of the river-plume front whose water column was unstable, and resulting in particles of high bulk density values.The EOF (Emperical Orthogonal Function) results showed the river plume affect the hydrographic condition and suspended particle characteristics within three different physical processes. The time series result of settling velocity of different size classes was calculated according to the Stokes Law, and they showed the value of > 153 μm class was larger than 0.314 mm/s, and the values of 153 ~ 63, 63 ~ 10, and < 10 μm classes were smaller than 12.001, 1.139, and 0.138 mm/s respectively. The average particle settling velocity is 0.54 ~ 30.93 mm/s
目次 Table of Contents
目錄
致 謝 i
中文摘要 iii
Abstract v
圖目錄 x
表目錄 xv
第一章 序論 1
第一節 前言 1
第二節 沖淡水動力 3
第三節 水體懸浮顆粒 10
第四節 研究目的 14
第二章 研究區域 15
第一節 濁水溪地理位置及水文概況 15
第二節 前人研究 21
第三章 研究流程和分析方法 26
第一節 實驗設計 26
1-1 站位規劃 26
1-2 實驗和採樣過程 28
第二節 儀器介紹 33
2-2 現場雷射粒徑分析儀 (LISST) 34
2-3 多層網目過濾系統 (Catnet) 35
2-4 聲學都卜勒流速剖面儀 (AQUA-dopp) 35
2-5 碳氫氮元素分析儀 (CHN Analyzer) 36
2-6 電子顯微鏡 (Scanning Electron Microscope;SEM) 36
第三節 參數計算與分析 38
3-1 靜力場穩定度 (Static Stability) 38
3-2 調和分析 (Harmonic Analysis) 38
3-3 顆粒容積密度 (Particle Bulk Density) 39
3-4 顆粒沉降速度 (Particle Settling Velocity) 40
3-5 底床剪應速度 (Bottom Shear Velocity) 40
3-6 經驗正交函數 (Empirical Orthogonal Function) 43
第四章 結果 46
第一節 潮位及流場資料 46
第二節 風場結果 51
第三節 波浪場結果 51
第四節 底床邊界剪應速度結果 53
第五節 水文時間序列剖面 55
第六節 顆粒體積濃度結果 60
第七節 現場水樣分析結果 64
第八節 顆粒容積密度 68
第九節 顆粒沉降速度 68
第十節 顆粒性有機碳和顆粒性有機氮分析結果 71
第十一節 經驗正交函數結果 77
第五章 討論 83
第一節 濁水溪河口近岸區域水文性質變化 83
第二節 濁水溪河口近岸區域底床再懸浮機制 86
第三節 濁水溪河口近岸區域表層懸浮顆粒特性變化 88
第四節 生物性顆粒與絮凝機制之討論 90
第五節 經驗正交函數討論 95
第六章 結論 97
參考文獻 100
參考文獻 References
中文部分
中興工程顧問有限公司,2010。彰化縣西南角 (大城) 海埔地工業區工業專用港開發環境影響評估報告。台北市,國光石化科技股份有限公司。
許明雄、余進利、鄭志維,2003。雲林離島工業區附近海域海流調查研究,第25屆海洋工程研討會論文集,第579-586。
黃煌煇、高瑞棋、余進利、江文山、劉大綱、溫進丁、許明雄、涂力夫,2005。彰化濱海工業區整體開發規劃調查研究第94年第一部分現場調查監測及分析第一冊壹、海域地行水深調查貳、海流流況調查参、彰濱工業區潮汐觀測。台南市,成功大學水工試驗所。
楊仁凱,2010。沖淡水粒徑結構之時空變化,國立中山大學海洋地質及化學研究所碩士論文,共 141 頁。
陳俊偉,2012。枯、豐水季濁水溪河口三角洲及潮坪沉機物傳輸型態和來源,國立中山大學海洋地質及化學研究所碩士論文,共112頁。
黃聖峰,2012。高屏溪口小尺度沖淡水動力作用之研究,國立中山大學海洋地質及化學研究所碩士論文,共126頁。
鄭宇凡,2011。濁水溪河口懸浮沉積物輸送之調查研究,國立中央大學水文與海洋科學研究所碩士論文,共 271 頁。
英文部分
Agrawal, Y. C. and Pottsmith, H. C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, Vol. 168, No. 1-4: 89 - 114.
Amoux-Chiavassa, S., Rey, V. and Fraunie, P., 1999. Modeling of suspended sediment fluxes off the Rhone river mouth. Journal of Coastal Research, Vol. 15, No. 1: 61 - 73.
Bagnold, R. A., 1966. An approach to the sediment transport problem from general physics. Geological Survey Professional Paper 4421, 37.
Baba, J. P. and Komar, P. D., 1981. Measurements and analysis of settling velocities of natural quartz sand grains. Journal of Sedimentary Research, Vol. 51, No. 2: 631-640.
Bianchi, T. S., Galler, J. J. and Allison, M. A., 2007. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine Coastal and Shelf Science, Vol. 73, No.1-2: 211-222.
Bowman M. J., 1988. Estuarine fronts. Hydrodynamics of estuarines,Vol. 1, 85-132.
Chao, S. Y. and Boicourt, W. C., 1986. Onset of estuarine plumes. Journal of Physical Oceanography, Vol. 16, 2137-2149.
Chao, S. Y., 1988b. Wind-driven motion of estuarine plumes. Journal of Physical Oceanography, Vol. 18, No. 8: 1144 - 1166.
Chien, H., Chiang W.-S., Kao, S.-J., Liu, K-K, Liu, PL-F., 2011. Sediment dynamics observed in the Jhoushuei River and adjacent coastal zone in Taiwan Strait. Oceanography, Vol. 24, No. 4: 100-109.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, Vol. 423, No. 6967: 648 – 651.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., Stark, C. P., 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, Vol. 32, No. 8: 733 – 736.
Dyer, K. R., and Manning, A. J., 1999. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions. Journal of Sea Research, Vol. 41: 87-95.
Eisma, D., 1988. Intertidal deposits: River mouths, tidal flats, and coastal lagoons, CRC Press LLC, Florida, 525.
Eisma, D., Schuhmacher, T., Boekel, H., van Heerwaarden, J., Franken, H., Lann, M., Vaars, A., Eijgenraam, F., Kalf, J., 1990. A camera and images analysis system for in situ observation of flocs in natural waters. Netherlands Journal of Sea Research, Vol. 27, 43 - 56.
Franks, P. J. S., and Anderson, D. M., 1992. Alongshore transport of toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Marine. Marine Biology, Vol. 112, 153-164.
Garvine, R. W. and Monk, J. D., 1974. Frontal structure of a river plume. Journal of Geophysical Research, Vol. 79, No. 15: 2251 - 2259.
Gibbs, R. J., 1973. Mechanisms of trace metal transport in rivers. Science, Vol. 180, No. 4081: 71 – 73.
Grant, W. D. and Madsen, O. S., 1986. The continental shelf bottom boundary layer. Annual Review: Fluid Mechanism, Vol. 18, 265-305.
Hayes, M. O., 1979. Barrier island morphology as a function of tidal and wave regime. In: Barrier island from the gulf of St. Lawrrence to the gulf of Mexico, Leatherman, S.P., Academic Press, New York, 1-27.
Hetland, R. D., and W. R. Geyer, 2004. An idealized study of long, partically mixed estuaries. Journal of Physical Oceanography, Vol. 34, 2677-2691.
Hetland, R. D., 2005.Relating River Plume Structure to Vertical Mixing. Journal of Physical Oceanography, Vol. 35, 1667-1688.
Hill, P. S., Sherwood, C. R., Sternberg, R. W., and Nowell, A. R. M., 1994. In situ measurements of particle settling velocity on the northern California continental shelf. Continental Shelf Research I, Vol. 14: 1123-1137.
Hsu, R.T., and Liu, J.T., 2010. In-situ estimations of the density and porosity of flocs having different sizes in a submarine canyon. Marine Geology, Vol. 276, 105-109.
Hung, J. J. and Hsu, C. L., 2004. Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin, Vol. 49, No. 4: 479-495.
Hung, J. J., Lu, C. C., Huh, C. A. and Liu, J. T., 2009. Geochemical controls on distribution and speciation of As and Hg in sediments along the Gaoping (Kaoping) Estuary-Canyon system off southwestern Taiwan. Journal of Marine Systems, Vol. 76, No. 4: 479-495.
Huh C-A, Chen W-F, Hsu F-H, Su C-C, Chiu J-K et al., 2011. Modern (< 100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particles size distribution. Continental Shelf Research, Vol. 31, 47 – 63.
Kao, S. J., Chan, S. C., Kuo, C. H., Liu, K. K., 2005. Transport - dominated sediment loading in Taiwanese river: A case study from the Ma-an Stream. Journal of Geology, Vol. 113, No. 2: 217 – 225.
Kao, S. J., Jan, Sen, Hsu, S. C., Lee, T. Y., and Dai M., 2008. Sediment budget in the Taiwan Strait with high fluvial sediment inputs from mountainous rivers: New observations and synthesis. TAO, Vol. 19, No. 5: 525 – 546.
Khelifa, A., and Hill, P. S., 2006. Model for effective density and settling velocity of flocs. Journal of Hydraulic Research, Vol. 44, No. 3: 390-401.
Kriutsou, V., Gascoigne, J. and Jones, S. E., 2008. Harmonic analysis of suspended particular matter in the Menai Strait (UK). Ecological Modelling, Vol. 212, No. 24: 53-67.
Kudela, Raphael M. and Peterson, Tawnya D., 2009. Influence of a buoyant river plume on phytoplankton nutrient dynamics: What controls standing stocks and productivity? Journal of Geophysical Research, Vol. 114, C00B11.
Lee, B. J., Fettweis, M., Toorman, E., and Molz, F., 2012. Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone. Journal of Geophysical Research, Vol. 117, C03014.
Li, M. Z. and Amos, C. L., 1995. SEDTRANS92: A sediment transport model for continental shelves. Computer and Geosciences, Vol. 21, No. 4: 533-554.
Liu, J. T., Chao, S. Y. and Hsu, R. T., 2002a. Numerical modeling study of sediment dispersal by a river plume. Continental Shelf Research, Vol. 22, 1745 - 1773.
Liu, J. T., Liu, K. J. and Huang J. c., 2002b. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, Vol. 207, 55 – 81.
Liu, J. T., Hung, J. J., H. L., Huh, C. A., Lee, C. L., Hsu, R. T., Huang, Y. W. and Chu, J. C., 2009. From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine canyon. Journal of Marine System, Vol. 76, No. 4: 417 - 432.
Liu, Y. G., MacCready, P. and Hickey, B. M., 2009. Columbia River plume patterns in summer 2004 as revealed by hindcast coastal ocean circulation model. Geophysical Research Letters, Vol, 36, No.2: C00B04.
Manning, A. J., Bass, S. J., 2006. Observations of cohesive sediment settling fluxes in high energy tidal estuarine environments. Marine Geology, Vol. 235, 177 - 192.
Manning, A. J., Bass, S. J., 2006. Variability in cohesive sediment settling fluxes: observation under different estuarine tidal conditions, Marine Geology., Vol. 235, No. 1-4: 117-192.
Milliman J . D. and Meade, R. H., 1983. World wide delivery of river sediment to the ocean. Journal of Geology, Vol. 91, No. 1: 1 - 21.
Milliman, J. D., Xie, Q. and Yang, Z., 1984. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean. American Journal of Science, Vol. 284, No. 7: 824-834.
Milliman, J. D. and Syvitski, J. P. M., 1992. Geomorphic tectonic control of sediment discharge to the ocean - the importance of small mountainous rivers. Journal of Geology, Vol. 100, No. 5: 525 - 544.
Milliman, J. D., Kao, S. J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean: Impact of super-typhoon Herb (1996) on Taiwanese River. Journal of Geology, Vol. 113, 503 – 516.
Milliman, J. D., Lin S-W, Kao S-J, Liu, J-P, Liu C-S, et al., 2007. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Gology, Vol. 35, No. 9: 779 – 782.
Mulder, T., Syvitski, 1995. Turbidity currents generated at river mouths during exceptional discharge to the world oceans. Journal of Geology, Vol. 103 285-298
Murray, Rory B. O’Hara, Hodgson, D. M., Throne, P. D., 2012. Wave groups and sediment resuspension processes over evolving sandy bedforms. Continental Shelf Research. Vol. 46: 16-30.
Myklestad, S. M., 2000. Dissolved organic carbon from phytoplankton. The Handbook of Environment Chemistry, Vol. 5D: 111-148.
Nielsen, A. A., Conradsen, K. and Anderson, O. B., 2002. A change oriented extension of EOF analysis applied to the 1996 – 1997 AVHRR sea surface temperature data. Physical and Chemistry of the Earth. Vol. 27, 1379 – 1386
Pinonesen, A.., Valle-Levinson, A., Narvaez, D. A., Vargas, C. A., Navarrete, S. A., Yuras, G., Castilla, J. C., 2005. Wind-induced diurnal variability in river plume motion. Estuarine, Coastal and Shelf Science, Vol. 65, 513 – 525
Romera-Castillo, C., Sarmento, H., Alvarez-Salgado X. A., Gasol, J. M., and Marrase, C., 2010. Production of chromophoric dissolved organic matter marine phytoplankton. American Society of Limnology and Oceanography, Vol.55, No.1: 446-454.
Spahn, E. Y, Hormer-Devine, A. R., Nash, J. D., Jay, D. A., Kilcher Levi, 2009. Particle resuspension in the Columbia River plume near field. Journal of Geophysical Research, Vol. 114, C00B14.
Thorne, P. D., Davies, A. G., Bell, P. S., 2009. Observations and analysis of sediment diffusivity profiles over sandy ripped beds under waves. Journal of Geophysical Research, Vol. 114, No.2
Turner, A., Millward, G. E., 2002. Suspended particle: Their role in estuarine biogeochemical cycles. Estuarine, Coastal and Shelf Science, Vol. 55, 857 – 883.
van Leussen, W., 1994. Estuarine macroflocs: Their role in fine-grained sediment transport, PHD dissertation, Utrecht Univ., Utrecht, Netherlamds.
vaz, N. and Dias, J. M., 2008. Hydrographic characterization of an estuarine tidal channel. Journal of Marine System, Vol. 70, 168 - 181.
Wang, Y. H., Lee, I. H. and Liu, J. T., 2008. Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuarine, Coastal and Shelf Science, Vol. 80, 153 - 160.
Wright, L. D., 1985. River deltas. In: Davis, R. A. Coastal Sedimentary Environments, New York, Springer, 1-76
Wright, L. D. and Nittrouer, C. A., 1995. Dispersal of river sediments in coastal seas – 6 contrasting cases. Estuaries, Vol. 18, NO. 3: 494 - 508.
Xia, X. M., Y. Li, H. Yang, C. Y. Wu, T. H. Sing, H. K. Pong, 2004. Observation on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China, Continental Shelf Research, Vol. 24, 1809 - 1826
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code