Responsive image
博碩士論文 etd-0730114-150126 詳細資訊
Title page for etd-0730114-150126
論文名稱
Title
探討珊瑚化合物與 PTEN 應用於脊髓損傷治療之潛力
The therapeutic effects of coral-compound and PTEN in rats with traumatic spinal cord injury
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
226
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-10-21
繳交日期
Date of Submission
2016-12-05
關鍵字
Keywords
星狀細胞、第10號染色體缺失的磷酸酶和張力蛋白的同源基因、抗發炎、脊髓損傷、海洋天然物、微膠細胞、神經保護、膠質疤、硫化軟骨蛋白多醣
microglia, marine natural product, 11-dehydrosinulariolide, neuroprotection, spinal cord injury, anti-inflammation, phosphatase and tensin homologue deleted on chromosome 10, astrocyte, glial scar, chondroitin sulfate proteoglycans
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
於本研究中,我們發現利用椎管(intrathecal)預先給予海洋天然物11-dehydrosinulariolide至脊髓損傷大白鼠,在受傷後8小時,可以減少因為脊髓損傷所引起的細胞凋亡。其機轉是利用增加抗凋亡蛋白Bcl-2以及增加細胞存活相關蛋白Akt以及ERK的活化。此外給予11-dehydrosinulariolide可以同時促進Bcl-2上游轉譯因子CREB之磷酸化。於受傷後第七天,給予11-dehydrosinulariolide可以減少因脊髓損傷後的發炎反應,減低由於脊髓損傷所增加的發炎相關蛋白:誘發型一氧化氮合成酶(inducible NO synthase)與腫瘤壞死因子α(tumor necrosis factor-α)。給予11-dehydrosinulariolide更可以增加M2微膠細胞的標記arginase-1與CD206。因此,11-dehydrosinulariolide的抗發炎機制或許跟調控微膠細胞的其他活化途徑相關。由於具有神經保護以及抗神經發炎的效果,再加上可以由養殖型珊瑚中大量純化,我們認為11-dehydrosinulariolide可以開發成為一具有潛力的神經保護藥物。除了神經保護與抗發炎的策略,許多學者指出膠質疤(glial scar)會成為脊髓損傷後神經再生的障礙。許多研究也暗示星狀細胞之PI3K/Akt/mTOR路徑的活化與膠質疤的形成相關。在本研究中,我們利用椎管注射一病毒載體(viral vector),在脊髓損傷大鼠過量表現(overexpress)第10號染色體缺失的磷酸酶和張力蛋白的同源基因(tensin homologue deleted on chromosome 10;PTEN)蛋白質。於脊髓損傷後,過量表現PTEN蛋白可以減弱膠質疤的形成、影響硫化軟骨蛋白多醣(chondroitin sulfate proteoglycan, CSPG)的表現、促進神經再生進入受傷區域,導致促進大白鼠行為能力恢復。由於延後(delay)治療組比受傷後立即給予病毒載體的更具有促進恢復行為能力的效果。這個研究的結果或許可以嘉惠一些無法於受傷後立即接受治療的脊髓損傷病患。
Abstract
In the present study intrathecal pretreatment 11-dehydrosinulariolide attenuated spinal cord injury (SCI)-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of inducible NO synthase and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. On the basis of its neuroprotective and anti-inflammatory effects and ease of isolation from a coral that can be farmed, 11-dehydrosinulariolide is a potential neuroprotective agent. Besides of neuroprotection and anti-inflammation strategy, several studies suggest that glial scars pose as barriers that limit neurite regeneration after SCI. Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. In this study, we intrathecally injected a recombinant adenovirus carrying the pten gene to cause overexpression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in rats with SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycans expression, and improved axon regeneration into the lesion site led to improved locomotor function after SCI. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI. These findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.
Key words: marine natural product; 11-dehydrosinulariolide; microglia; neuroprotection; spinal cord injury; anti-inflammation; phosphatase and tensin homologue deleted on chromosome 10; astrocyte; glial scar; chondroitin sulfate proteoglycans.
目次 Table of Contents
Table of contents i
List of Figures iv
List of tables vi
Abstract vii
中文摘要 ix
General introduction 1
A new strategy for treatment of SCI is urgently needed 1
Pathophysiological processes following SCI 2
Clinical study of spinal cord injury 3
The experimental drugs to treat secondary injury of SCI 5
Animal models in traumatic spinal cord injury 8
The aim and scope of present study 11
Materials and methods 12
Implantation of intrathecal catheters 12
Preparation of adenovirus vectors 12
Spinal cord contusion injury in rats 13
Drug and viral vectors treatment 13
Behavioral analysis 14
Immunohistochemistry and quantification 15
Western blotting 16
Statistical analysis 17
PART I: A coral-derived compound improves functional recovery after spinal cord injury through its antiapoptotic and anti-inflammatory effects 21
Introduction 22
The roles of glial cells in SCI 22
Glial cells driven neurotrophic factors against SCI 23
Apoptosis plays an important role in the acute stage of spinal cord injury 25
Inflammation contributes substantially to secondary injury in SCI 27
The alternative activated M2 microglia has beneficial effects after SCI 29
The marine-derived natural compounds are good source of potential drugs 30
Background for marine organisms-derived compound 11-dehydrosinulariolide 32
Results 34
11-Dehydrosinulariolide improved locomotor behavior after SCI 34
Antiapoptotic effects of 11-dehydrosinulariolide after SCI 34
Effects of 11-dehydrosinulariolide on the neuroprotection-related signaling pathway 35
11-Dehydrosinulariolide increased the amount of white matter spared after SCI 36
11-Dehydrosinulariolide attenuated SCI-induced inflammatory protein expression 37
11-Dehydrosinulariolide promoted an alternative pathway of microglia activation after SCI 37
11-Dehydrosinulariolide enhanced SCI-induced VEGF-A, GDNF and BDNF expression 38
Discussion 58
PART II: The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury 65
Introduction 66
Harmful roles of astrogliosis and glial scar formation in SCI 66
Glial scars are an obstacle to modern SCI treatment: Chondroitin sulfate proteoglycans (CSPGs) are the major components of glial scars inhibiting axonal regeneration 66
The PI3K/PTEN/Akt/mTOR pathway as a novel therapeutic target of CNS injury: Upregulation of PTEN may be beneficial in SCI by inhibiting astrogliosis 69
Results 72
Determining the best time for Ad-PTEN injection by examination of astrocytic Akt activation 72
Time course of exogenous pten gene-induced upregulation of PTEN expression 73
I.t. Ad-PTEN improved locomotor function following SCI 74
Spinal PTEN overexpression attenuated SCI-induced Akt and S6 phosphorylation 75
I.t. Ad-PTEN attenuated SCI-induced gliosis at 7 days after injury 76
PTEN overexpression modulated spinal CPSGs expression after SCI 78
PTEN overexpression attenuated glial scar formation and enhanced neurofilament regeneration across scar 79
Discussion 100
PTEN-regulated astrocytic Akt signaling in SCI 100
I.t. Ad-PTEN overexpressed spinal astrocytic PTEN 101
CSPGs expression after SCI 104
The effects of astrocytic PTEN overexpression in SCI 105
The role of the PI3K/Akt/mTOR pathway in SCI 107
The advantages of PTEN in SCI 109
Summary 111
References 114
Autobiography 160
附錄:發表文章 165
參考文獻 References
Ahn, M., Lee, C., Jung, K., Kim, H., Moon, C., Sim, K.B., Shin, T., 2012. Immunohistochemical study of arginase-1 in the spinal cords of rats with clip compression injury. Brain Res 1445, 11-19.
Airaksinen, M.S., Saarma, M., 2002. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3, 383-394.
Akdemir, O., Ucankale, M., Karaoglan, A., Barut, S., Sagmanligil, A., Bilguvar, K., Cirakoglu, B., Sahan, E., Colak, A., 2008. Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci 15, 1130-1136.
Akhtar, A.Z., Pippin, J.J., Sandusky, C.B., 2008. Animal models in spinal cord injury: a review. Rev Neurosci 19, 47-60.
Allen, A., 1911. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: A preliminary report. J Am Med Assoc 57, 878-880.
Almeida, R.D., Manadas, B.J., Melo, C.V., Gomes, J.R., Mendes, C.S., Graos, M.M., Carvalho, R.F., Carvalho, A.P., Duarte, C.B., 2005. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12, 1329-1343.
Andrews, E.M., Richards, R.J., Yin, F.Q., Viapiano, M.S., Jakeman, L.B., 2012. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 235, 174-187.
Anjum, R., Blenis, J., 2008. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9, 747-758.
Ansorena, E., De Berdt, P., Ucakar, B., Simon-Yarza, T., Jacobs, D., Schakman, O., Jankovski, A., Deumens, R., Blanco-Prieto, M.J., Preat, V., des Rieux, A., 2013. Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 455, 148-158.
Arvidsson, A., Kokaia, Z., Airaksinen, M.S., Saarma, M., Lindvall, O., 2001. Stroke induces widespread changes of gene expression for glial cell line-derived neurotrophic factor family receptors in the adult rat brain. Neuroscience 106, 27-41.
Aschauer, D.F., Kreuz, S., Rumpel, S., 2013. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8, e76310.
Aubert, I., Ridet, J.L., Gage, F.H., 1995. Regeneration in the adult mammalian CNS: guided by development. Curr Opin Neurobiol 5, 625-635.
Awad, B.I., Carmody, M.A., Steinmetz, M.P., 2013. Potential Role of Growth Factors in the Management of Spinal Cord Injury. World Neurosurg.
Bachstetter, A.D., Xing, B., de Almeida, L., Dimayuga, E.R., Watterson, D.M., Van Eldik, L.J., 2011. Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation 8, 79.
Baldwin, S.A., Broderick, R., Blades, D.A., Scheff, S.W., 1998. Alterations in temporal/spatial distribution of GFAP- and vimentin-positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. J Neurotrauma 15, 1015-1026.
Banati, R.B., Newcombe, J., Gunn, R.N., Cagnin, A., Turkheimer, F., Heppner, F., Price, G., Wegner, F., Giovannoni, G., Miller, D.H., Perkin, G.D., Smith, T., Hewson, A.K., Bydder, G., Kreutzberg, G.W., Jones, T., Cuzner, M.L., Myers, R., 2000. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123 ( Pt 11), 2321-2337.
Bandtlow, C.E., Zimmermann, D.R., 2000. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80, 1267-1290.
Barde, Y.A., Edgar, D., Thoenen, H., 1982. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1, 549-553.
Bartholdi, D., Schwab, M.E., 1997. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9, 1422-1438.
Bartolini, A., Vigliani, M.C., Magrassi, L., Vercelli, A., Rossi, F., 2011. G-CSF administration to adult mice stimulates the proliferation of microglia but does not modify the outcome of ischemic injury. Neurobiol Dis 41, 640-649.
Barut, S., Unlu, Y.A., Karaoglan, A., Tuncdemir, M., Dagistanli, F.K., Ozturk, M., Colak, A., 2005. The neuroprotective effects of z-DEVD.fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats. Surg Neurol 64, 213-220; discussion 220.
Basso, D.M., Beattie, M.S., Bresnahan, J.C., 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12, 1-21.
Beattie, M.S., Hermann, G.E., Rogers, R.C., Bresnahan, J.C., 2002. Cell death in models of spinal cord injury. Prog Brain Res 137, 37-47.
Becker, J., Grasso, R.J., 1985. Suppression of phagocytosis by dexamethasone in macrophage cultures: inability of arachidonic acid, indomethacin, and nordihydroguaiaretic acid to reverse the inhibitory response mediated by a steroid-inducible factor. Int J Immunopharmacol 7, 839-847.
Bergelson, J.M., Cunningham, J.A., Droguett, G., Kurt-Jones, E.A., Krithivas, A., Hong, J.S., Horwitz, M.S., Crowell, R.L., Finberg, R.W., 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320-1323.
Bernardo, A., Ajmone-Cat, M.A., Levi, G., Minghetti, L., 2003. 15-deoxy-delta12,14-prostaglandin J2 regulates the functional state and the survival of microglial cells through multiple molecular mechanisms. J Neurochem 87, 742-751.
Bhalala, O.G., Pan, L., Sahni, V., McGuire, T.L., Gruner, K., Tourtellotte, W.G., Kessler, J.A., 2012. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32, 17935-17947.
Bhat, N.R., Feinstein, D.L., Shen, Q., Bhat, A.N., 2002. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem 277, 29584-29592.
Bhat, N.R., Zhang, P., Lee, J.C., Hogan, E.L., 1998. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18, 1633-1641.
Blesch, A., Tuszynski, M.H., 2003. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J Comp Neurol 467, 403-417.
Blesch, A., Tuszynski, M.H., 2007. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci 27, 10535-10545.
Blesch, A., Tuszynski, M.H., 2009. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32, 41-47.
Blesch, A., Yang, H., Weidner, N., Hoang, A., Otero, D., 2004. Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci 27, 190-201.
Block, M.L., Hong, J.S., 2005. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76, 77-98.
Block, M.L., Zecca, L., Hong, J.S., 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57-69.
Blum, D., Chtarto, A., Tenenbaum, L., Brotchi, J., Levivier, M., 2004. Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 17, 359-366.
Borchardt, J.K., 2002. The Beginnings of Drug Therapy: Ancient Mesopotamian Medicine. Drug News Perspect 15, 187-192.
Boyce, V.S., Park, J., Gage, F.H., Mendell, L.M., 2012. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur J Neurosci 35, 221-232.
Bracken, M.B., Shepard, M.J., Collins, W.F., Holford, T.R., Young, W., Baskin, D.S., Eisenberg, H.M., Flamm, E., Leo-Summers, L., Maroon, J., et al., 1990. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322, 1405-1411.
Bracken, M.B., Shepard, M.J., Collins, W.F., Jr., Holford, T.R., Baskin, D.S., Eisenberg, H.M., Flamm, E., Leo-Summers, L., Maroon, J.C., Marshall, L.F., et al., 1992. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg 76, 23-31.
Bracken, M.B., Shepard, M.J., Holford, T.R., Leo-Summers, L., Aldrich, E.F., Fazl, M., Fehlings, M., Herr, D.L., Hitchon, P.W., Marshall, L.F., Nockels, R.P., Pascale, V., Perot, P.L., Jr., Piepmeier, J., Sonntag, V.K., Wagner, F., Wilberger, J.E., Winn, H.R., Young, W., 1997. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277, 1597-1604.
Bracken, M.B., Shepard, M.J., Holford, T.R., Leo-Summers, L., Aldrich, E.F., Fazl, M., Fehlings, M.G., Herr, D.L., Hitchon, P.W., Marshall, L.F., Nockels, R.P., Pascale, V., Perot, P.L., Jr., Piepmeier, J., Sonntag, V.K., Wagner, F., Wilberger, J.E., Winn, H.R., Young, W., 1998. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89, 699-706.
Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W., McMahon, S.B., 2002. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636-640.
Braughler, J.M., Hall, E.D., 1984. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J Neurosurg 61, 290-295.
Buffo, A., Rite, I., Tripathi, P., Lepier, A., Colak, D., Horn, A.P., Mori, T., Gotz, M., 2008. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105, 3581-3586.
Busch, S.A., Horn, K.P., Silver, D.J., Silver, J., 2009. Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29, 9967-9976.
Busillo, J.M., Cidlowski, J.A., 2013. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 24, 109-119.
Buss, A., Pech, K., Kakulas, B.A., Martin, D., Schoenen, J., Noth, J., Brook, G.A., 2009. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol 9, 32.
Cacalano, G., Fariñas, I., Wang, L.-C., Hagler, K., Forgie, A., Moore, M., Armanini, M., Phillips, H., Ryan, A.M., Reichardt, L.F., Hynes, M., Davies, A., Rosenthal, A., 1998. GFR±1 Is an Essential Receptor Component for GDNF in the Developing Nervous System and Kidney. Neuron 21, 53-62.
Cai, Q.Y., Chen, X.S., Zhong, S.C., Luo, X., Yao, Z.X., 2009. Differential expression of PTEN in normal adult rat brain and upregulation of PTEN and p-Akt in the ischemic cerebral cortex. Anat Rec (Hoboken) 292, 498-512.
Cantley, L.C., Neel, B.G., 1999. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96, 4240-4245.
Cao, L., Liu, L., Chen, Z.Y., Wang, L.M., Ye, J.L., Qiu, H.Y., Lu, C.L., He, C., 2004. Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain 127, 535-549.
Cao, Z., Gao, Y., Bryson, J.B., Hou, J., Chaudhry, N., Siddiq, M., Martinez, J., Spencer, T., Carmel, J., Hart, R.B., Filbin, M.T., 2006. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci 26, 5565-5573.
Carvalho, A.L., Caldeira, M.V., Santos, S.D., Duarte, C.B., 2008. Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol 153 Suppl 1, S310-324.
Casha, S., Zygun, D., McGowan, M.D., Bains, I., Yong, V.W., Hurlbert, R.J., 2012. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135, 1224-1236.
Cashman, N., Tan, L.-Y., Krieger, C., Mädler, B., Mackay, A., Mackenzie, I., Benny, B., Nantel, S., Fabros, M., Shinobu, L., Yousefi, M., Eisen, A., 2008. Pilot study of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle & Nerve 37, 620-625.
Castren, E., 2005. Is mood chemistry? Nat Rev Neurosci 6, 241-246.
Chan, C.C., Wong, A.K., Liu, J., Steeves, J.D., Tetzlaff, W., 2007. ROCK inhibition with Y27632 activates astrocytes and increases their expression of neurite growth-inhibitory chondroitin sulfate proteoglycans. Glia 55, 369-384.
Chang, H.T., 2007. Subacute human spinal cord contusion: few lymphocytes and many macrophages. Spinal Cord 45, 174-182.
Chappell, W.H., Steelman, L.S., Long, J.M., Kempf, R.C., Abrams, S.L., Franklin, R.A., Basecke, J., Stivala, F., Donia, M., Fagone, P., Malaponte, G., Mazzarino, M.C., Nicoletti, F., Libra, M., Maksimovic-Ivanic, D., Mijatovic, S., Montalto, G., Cervello, M., Laidler, P., Milella, M., Tafuri, A., Bonati, A., Evangelisti, C., Cocco, L., Martelli, A.M., McCubrey, J.A., 2011. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2, 135-164.
Chauhan, A., Sharma, U., Jagannathan, N.R., Reeta, K.H., Gupta, Y.K., 2011. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res 225, 603-609.
Chen, C.H., Huang, S.Y., Chen, N.F., Feng, C.W., Hung, H.C., Sung, C.S., Jean, Y.H., Wen, Z.H., Chen, W.F., 2013. Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia. Neuroscience 242, 39-52.
Chen, C.H., Sung, C.S., Huang, S.Y., Feng, C.W., Hung, H.C., Yang, S.N., Chen, N.F., Tai, M.H., Wen, Z.H., Chen, W.F., 2016. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 278, 27-41.
Chen, H.H., Zhang, N., Li, W.Y., Fang, M.R., Zhang, H., Fang, Y.S., Ding, M.X., Fu, X.Y., 2015a. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression. Neural Regen Res 10, 1427-1432.
Chen, K.B., Uchida, K., Nakajima, H., Yayama, T., Hirai, T., Watanabe, S., Guerrero, A.R., Kobayashi, S., Ma, W.Y., Liu, S.Y., Baba, H., 2011. Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976) 36, 1350-1358.
Chen, W.F., Chakraborty, C., Sung, C.S., Feng, C.W., Jean, Y.H., Lin, Y.Y., Hung, H.C., Huang, T.Y., Huang, S.Y., Su, T.M., Sung, P.J., Sheu, J.H., Wen, Z.H., 2012. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson's model: a promising candidate for the treatment of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 385, 265-275.
Chen, W.F., Chen, C.H., Chen, N.F., Sung, C.S., Wen, Z.H., 2015b. Neuroprotective effects of direct intrathecal administration of granulocyte colony-stimulating factor in rats with spinal cord injury. CNS Neurosci Ther 21, 698-707.
Chen, W.F., Jean, Y.H., Sung, C.S., Wu, G.J., Huang, S.Y., Ho, J.T., Su, T.M., Wen, Z.H., 2008. Intrathecally injected granulocyte colony-stimulating factor produced neuroprotective effects in spinal cord ischemia via the mitogen-activated protein kinase and Akt pathways. Neuroscience 153, 31-43.
Chen, W.F., Sung, C.S., Jean, Y.H., Su, T.M., Wang, H.C., Ho, J.T., Huang, S.Y., Lin, C.S., Wen, Z.H., 2010. Suppressive effects of intrathecal granulocyte colony-stimulating factor on excessive release of excitatory amino acids in the spinal cerebrospinal fluid of rats with cord ischemia: role of glutamate transporters. Neuroscience 165, 1217-1232.
Cheriyan, T., Ryan, D.J., Weinreb, J.H., Cheriyan, J., Paul, J.C., Lafage, V., Kirsch, T., Errico, T.J., 2014. Spinal cord injury models: a review. Spinal Cord 52, 588-595.
Chhor, V., Le Charpentier, T., Lebon, S., Ore, M.V., Celador, I.L., Josserand, J., Degos, V., Jacotot, E., Hagberg, H., Savman, K., Mallard, C., Gressens, P., Fleiss, B., 2013. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32, 70-85.
Choi-Lundberg, D.L., Lin, Q., Chang, Y.N., Chiang, Y.L., Hay, C.M., Mohajeri, H., Davidson, B.L., Bohn, M.C., 1997. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838-841.
Choi, J.S., Park, H.J., Kim, H.Y., Kim, S.Y., Lee, J.E., Choi, Y.S., Chun, M.H., Chung, J.W., Lee, M.Y., 2005. Phosphorylation of PTEN and Akt in astrocytes of the rat hippocampus following transient forebrain ischemia. Cell Tissue Res 319, 359-366.
Chou, A.K., Yang, L.C., Wu, P.C., Wong, W.T., Liu, G.S., Chen, J.T., Howng, S.L., Tai, M.H., 2005. Intrathecal gene delivery of glial cell line-derived neurotrophic factor ameliorated paraplegia in rats after spinal ischemia. Brain Res Mol Brain Res 133, 198-207.
Chu, T.H., Chan, H.H., Kuo, H.M., Liu, L.F., Hu, T.H., Sun, C.K., Kung, M.L., Lin, S.W., Wang, E.M., Ma, Y.L., Cheng, K.H., Lai, K.H., Wen, Z.H., Hsu, P.I., Tai, M.H., 2014. Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN. Oncotarget 5, 1475-1490.
Chung, J., Kim, M.H., Yoon, Y.J., Kim, K.H., Park, S.R., Choi, B.H., 2014. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. J Neurosurg Spine 21, 966-973.
Citron, B.A., Arnold, P.M., Haynes, N.G., Ameenuddin, S., Farooque, M., Santacruz, K., Festoff, B.W., 2008. Neuroprotective effects of caspase-3 inhibition on functional recovery and tissue sparing after acute spinal cord injury. Spine (Phila Pa 1976) 33, 2269-2277.
Codeluppi, S., Svensson, C.I., Hefferan, M.P., Valencia, F., Silldorff, M.D., Oshiro, M., Marsala, M., Pasquale, E.B., 2009. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 29, 1093-1104.
Colton, C.A., 2009. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4, 399-418.
Corraliza, I.M., Soler, G., Eichmann, K., Modolell, M., 1995. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 206, 667-673.
Cragg, G.M., Newman, D.J., 2013. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830, 3670-3695.
Cragnolini, A.B., Huang, Y., Gokina, P., Friedman, W.J., 2009. Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. Glia 57, 1386-1392.
Cristiano, L., Bernardo, A., Ceru, M.P., 2001. Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 30, 671-683.
Crowe, M.J., Bresnahan, J.C., Shuman, S.L., Masters, J.N., Beattie, M.S., 1997. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3, 73-76.
Culbert, A.A., Skaper, S.D., Howlett, D.R., Evans, N.A., Facci, L., Soden, P.E., Seymour, Z.M., Guillot, F., Gaestel, M., Richardson, J.C., 2006. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 281, 23658-23667.
Cully, M., You, H., Levine, A.J., Mak, T.W., 2006. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6, 184-192.
David, S., Kroner, A., 2011. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12, 388-399.
Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G., Silver, J., 1997. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680-683.
Davies, S.J., Goucher, D.R., Doller, C., Silver, J., 1999. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19, 5810-5822.
Davis, R.L., Sanchez, A.C., Lindley, D.J., Williams, S.C., Syapin, P.J., 2005. Effects of mechanistically distinct NF-kappaB inhibitors on glial inducible nitric-oxide synthase expression. Nitric Oxide 12, 200-209.
De Leo, J.A., Tawfik, V.L., LaCroix-Fralish, M.L., 2006. The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 122, 17-21.
De Winter, F., Oudega, M., Lankhorst, A.J., Hamers, F.P., Blits, B., Ruitenberg, M.J., Pasterkamp, R.J., Gispen, W.H., Verhaagen, J., 2002. Injury-induced class 3 semaphorin expression in the rat spinal cord. Exp Neurol 175, 61-75.
Deckner, M., Lindholm, T., Cullheim, S., Risling, M., 2000. Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system. Exp Neurol 166, 350-362.
Delgado, M., 2002. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochem Biophys Res Commun 293, 771-776.
Delgado, M., Ganea, D., 2003. Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson's disease by blocking microglial activation. FASEB J 17, 944-946.
Deng, L.X., Deng, P., Ruan, Y., Xu, Z.C., Liu, N.K., Wen, X., Smith, G.M., Xu, X.M., 2013. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J Neurosci 33, 5655-5667.
Deng, L.X., Hu, J., Liu, N., Wang, X., Smith, G.M., Wen, X., Xu, X.M., 2011. GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp Neurol 229, 238-250.
Dittgen, T., Pitzer, C., Plaas, C., Kirsch, F., Vogt, G., Laage, R., Schneider, A., 2012. Granulocyte-colony stimulating factor (G-CSF) improves motor recovery in the rat impactor model for spinal cord injury. PLoS One 7, e29880.
Don, A.S., Tsang, C.K., Kazdoba, T.M., D'Arcangelo, G., Young, W., Zheng, X.F., 2012. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discov Today 17, 861-868.
Dougherty, K.D., Dreyfus, C.F., Black, I.B., 2000. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 7, 574-585.
Du, K., Montminy, M., 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273, 32377-32379.
Duman, R.S., Voleti, B., 2012. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35, 47-56.
Dumont, R.J., Okonkwo, D.O., Verma, S., Hurlbert, R.J., Boulos, P.T., Ellegala, D.B., Dumont, A.S., 2001. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24, 254-264.
Emery, E., Aldana, P., Bunge, M.B., Puckett, W., Srinivasan, A., Keane, R.W., Bethea, J., Levi, A.D., 1998. Apoptosis after traumatic human spinal cord injury. J Neurosurg 89, 911-920.
Endo, H., Nito, C., Kamada, H., Nishi, T., Chan, P.H., 2006. Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26, 1479-1489.
Enomoto, H., Araki, T., Jackman, A., Heuckeroth, R.O., Snider, W.D., Johnson, E.M., Milbrandt, J., 1998. GFR±1-Deficient Mice Have Deficits in the Enteric Nervous System and Kidneys. Neuron 21, 317-324.
Erschbamer, M., Pernold, K., Olson, L., 2007. Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. J Neurosci 27, 6428-6435.
Esposito, E., Cuzzocrea, S., 2011. Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci 32, 107-115.
Favaron, M., Manev, H., Alho, H., Bertolino, M., Ferret, B., Guidotti, A., Costa, E., 1988. Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci U S A 85, 7351-7355.
Fernandez-Lopez, D., Faustino, J., Derugin, N., Wendland, M., Lizasoain, I., Moro, M.A., Vexler, Z.S., 2012. Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience 207, 307-315.
Ferrara, N., Alitalo, K., 1999. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5, 1359-1364.
Ferrara, N., Gerber, H.P., LeCouter, J., 2003. The biology of VEGF and its receptors. Nat Med 9, 669-676.
Figley, S.A., Liu, Y., Karadimas, S.K., Satkunendrarajah, K., Fettes, P., Spratt, S.K., Lee, G., Ando, D., Surosky, R., Giedlin, M., Fehlings, M.G., 2014. Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury. PLoS One 9, e96137.
Figueroa, J.D., Cordero, K., Baldeosingh, K., Torrado, A.I., Walker, R.L., Miranda, J.D., Leon, M.D., 2012. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. J Neurotrauma 29, 551-566.
Fink, K.B., Andrews, L.J., Butler, W.E., Ona, V.O., Li, M., Bogdanov, M., Endres, M., Khan, S.Q., Namura, S., Stieg, P.E., Beal, M.F., Moskowitz, M.A., Yuan, J., Friedlander, R.M., 1999. Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience 94, 1213-1218.
Fitch, M.T., Doller, C., Combs, C.K., Landreth, G.E., Silver, J., 1999. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19, 8182-8198.
Fitch, M.T., Silver, J., 1997. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148, 587-603.
Fitch, M.T., Silver, J., 2008. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209, 294-301.
Flaherty, D.M., Hinde, S.L., Monick, M.M., Powers, L.S., Bradford, M.A., Yarovinsky, T., Hunninghake, G.W., 2004. Adenovirus vectors activate survival pathways in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 287, L393-401.
Fournier, A.E., Takizawa, B.T., Strittmatter, S.M., 2003. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23, 1416-1423.
Franco, R., Fernandez-Suarez, D., 2015. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131, 65-86.
Freeland, K., Boxer, L.M., Latchman, D.S., 2001. The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 92, 98-106.
Furnari, F.B., Lin, H., Huang, H.S., Cavenee, W.K., 1997. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci U S A 94, 12479-12484.
Galtrey, C.M., Fawcett, J.W., 2007. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54, 1-18.
Gao, H.M., Hong, J.S., 2008. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29, 357-365.
Gao, K., Shen, Z., Yuan, Y., Han, D., Song, C., Guo, Y., Mei, X., 2015. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/beta-catenin signaling pathway after spinal cord injury. J Neurochem.
Gao, Y., Deng, K., Hou, J., Bryson, J.B., Barco, A., Nikulina, E., Spencer, T., Mellado, W., Kandel, E.R., Filbin, M.T., 2004. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609-621.
Garcia-Alias, G., Barkhuysen, S., Buckle, M., Fawcett, J.W., 2009. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12, 1145-1151.
Garrido-Mesa, N., Zarzuelo, A., Galvez, J., 2013. Minocycline: far beyond an antibiotic. Br J Pharmacol 169, 337-352.
Garwood, J., Heck, N., Reichardt, F., Faissner, A., 2003. Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem 278, 24164-24173.
Geisler, F.H., Coleman, W.P., Grieco, G., Poonian, D., Sygen Study, G., 2001. The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976) 26, S87-98.
Geisler, F.H., Dorsey, F.C., Coleman, W.P., 1991. Recovery of motor function after spinal-cord injury--a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324, 1829-1838.
Ghosh, M., Xu, Y., Pearse, D.D., 2016. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. J Neuroinflammation 13, 9.
Gibbons, H.M., Dragunow, M., 2006. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res 1084, 1-15.
Giehl, K.M., Tetzlaff, W., 1996. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci 8, 1167-1175.
Gill, S.S., Patel, N.K., Hotton, G.R., O'Sullivan, K., McCarter, R., Bunnage, M., Brooks, D.J., Svendsen, C.N., Heywood, P., 2003. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9, 589-595.
Giulian, D., Li, J., Leara, B., Keenen, C., 1994. Phagocytic Microglia Release Cytokines and Cytotoxins That Regulate the Survival of Astrocytes and Neurons in Culture. Neurochemistry International 25, 227-233.
Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., Gage, F.H., 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934.
Golden, K.L., Pearse, D.D., Blits, B., Garg, M.S., Oudega, M., Wood, P.M., Bunge, M.B., 2007. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 207, 203-217.
Goncalves, M.B., Malmqvist, T., Clarke, E., Hubens, C.J., Grist, J., Hobbs, C., Trigo, D., Risling, M., Angeria, M., Damberg, P., Carlstedt, T.P., Corcoran, J.P., 2015. Neuronal RARbeta Signaling Modulates PTEN Activity Directly in Neurons and via Exosome Transfer in Astrocytes to Prevent Glial Scar Formation and Induce Spinal Cord Regeneration. J Neurosci 35, 15731-15745.
Gonzalez-Rey, E., Delgado, M., 2008. Vasoactive intestinal peptide inhibits cyclooxygenase-2 expression in activated macrophages, microglia, and dendritic cells. Brain Behav Immun 22, 35-41.
Gordon, S., 2003. Alternative activation of macrophages. Nat Rev Immunol 3, 23-35.
Griffin, W.S.T., Sheng, J.G., Royston, M.C., Gentleman, S.M., McKenzie, J.E., Graham, D.I., Roberts, G.W., Mrak, R.E., 1998. Glial-neuronal interactions in Alzheimer's disease: The potential role of a 'cytokine cycle' in disease progression. Brain Pathol 8, 65-72.
Gu, J., Tamura, M., Pankov, R., Danen, E.H., Takino, T., Matsumoto, K., Yamada, K.M., 1999. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146, 389-403.
Guerrero, A.R., Uchida, K., Nakajima, H., Watanabe, S., Nakamura, M., Johnson, W.E., Baba, H., 2012. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9, 40.
Guo, Y., Liu, S., Zhang, X., Wang, L., Zhang, X., Hao, A., Han, A., Yang, J., 2014. Sox11 promotes endogenous neurogenesis and locomotor recovery in mice spinal cord injury. Biochem Biophys Res Commun 446, 830-835.
Guo, Y., Zhang, H., Yang, J., Liu, S., Bing, L., Gao, J., Hao, A., 2013. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury. Neuroscience 238, 1-10.
Hérin, M., Colin, M., Tursch, B., 1976. Chemical studies of marine invertebrates. XXV1. Flexibilene, an unprecedented fifteen-membered ring diterpene hydrocarbon from the soft coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea). Bull Soc Chim Belg 85, 801-803.
Halassa, M.M., Fellin, T., Haydon, P.G., 2007. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13, 54-63.
Han, X., Lu, M., Wang, S., Lv, D., Liu, H., 2012. Targeting IKK/NF-kappaB pathway reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 511, 28-32.
Hannila, S.S., Filbin, M.T., 2008. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209, 321-332.
Harrigan, M.R., Ennis, S.R., Masada, T., Keep, R.F., 2002. Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery 50, 589-598.
Hartman, Z.C., Black, E.P., Amalfitano, A., 2007. Adenoviral infection induces a multi-faceted innate cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. Virology 358, 357-372.
Hasegawa-Moriyama, M., Ohnou, T., Godai, K., Kurimoto, T., Nakama, M., Kanmura, Y., 2012. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization. Biochem Biophys Res Commun 426, 76-82.
Hawryluk, G.W., Rowland, J., Kwon, B.K., Fehlings, M.G., 2008. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25, E14.
Hayashi, M., Ueyama, T., Nemoto, K., Tamaki, T., Senba, E., 2000. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma 17, 203-218.
He, Q., Wang, S., Liu, X., Guo, H., Yang, H., Zhang, L., Zhuang, P., Zhang, Y., Ye, Z., Hu, L., 2015. Salvianolate lyophilized injection promotes post-stroke functional recovery via the activation of VEGF and BDNF-TrkB-CREB signaling pathway. Int J Clin Exp Med 8, 108-122.
Hellal, F., Hurtado, A., Ruschel, J., Flynn, K.C., Laskowski, C.J., Umlauf, M., Kapitein, L.C., Strikis, D., Lemmon, V., Bixby, J., Hoogenraad, C.C., Bradke, F., 2011. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331, 928-931.
Hendriks, W.T., Eggers, R., Verhaagen, J., Boer, G.J., 2007. Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells. J Neurosci Res 85, 3041-3052.
Herrera, J.J., Nesic, O., Narayana, P.A., 2009. Reduced vascular endothelial growth factor expression in contusive spinal cord injury. J Neurotrauma 26, 995-1003.
Herrera, J.J., Sundberg, L.M., Zentilin, L., Giacca, M., Narayana, P.A., 2010. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury. J Neurotrauma 27, 2067-2076.
Herrmann, J.E., Imura, T., Song, B., Qi, J., Ao, Y., Nguyen, T.K., Korsak, R.A., Takeda, K., Akira, S., Sofroniew, M.V., 2008. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28, 7231-7243.
Hocking, A.M., Shinomura, T., McQuillan, D.J., 1998. Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17, 1-19.
Horita, Y., Honmou, O., Harada, K., Houkin, K., Hamada, H., Kocsis, J.D., 2006. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 84, 1495-1504.
Houweling, D.A., van Asseldonk, J.T., Lankhorst, A.J., Hamers, F.P., Martin, D., Bar, P.R., Joosten, E.A., 1998. Local application of collagen containing brain-derived neurotrophic factor decreases the loss of function after spinal cord injury in the adult rat. Neurosci Lett 251, 193-196.
Howitt, J., Lackovic, J., Low, L.H., Naguib, A., Macintyre, A., Goh, C.P., Callaway, J.K., Hammond, V., Thomas, T., Dixon, M., Putz, U., Silke, J., Bartlett, P., Yang, B., Kumar, S., Trotman, L.C., Tan, S.S., 2012. Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol 196, 29-36.
Hu, L.Y., Sun, Z.G., Wen, Y.M., Cheng, G.Z., Wang, S.L., Zhao, H.B., Zhang, X.R., 2010. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience 169, 1046-1062.
Hu, X., Leak, R.K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P., Chen, J., 2015. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 11, 56-64.
Hu, X., Li, P., Guo, Y., Wang, H., Leak, R.K., Chen, S., Gao, Y., Chen, J., 2012. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063-3070.
Huang, E.J., Reichardt, L.F., 2003. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72, 609-642.
Huang, S.Y., Sung, C.S., Chen, W.F., Chen, C.H., Feng, C.W., Yang, S.N., Hung, H.C., Chen, N.F., Lin, P.R., Chen, S.C., Wang, H.M., Chu, T.H., Tai, M.H., Wen, Z.H., 2015. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation 12, 59.
Huang, X., Kim, J.M., Kong, T.H., Park, S.R., Ha, Y., Kim, M.H., Park, H., Yoon, S.H., Park, H.C., Park, J.O., Min, B.H., Choi, B.H., 2009. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J Neurol Sci 277, 87-97.
Hurlbert, R.J., 2001. The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine (Phila Pa 1976) 26, S39-46.
Hurlbert, R.J., Hadley, M.N., Walters, B.C., Aarabi, B., Dhall, S.S., Gelb, D.E., Rozzelle, C.J., Ryken, T.C., Theodore, N., 2013. Pharmacological therapy for acute spinal cord injury. Neurosurgery 72 Suppl 2, 93-105.
Iannotti, C., Ping Zhang, Y., Shields, C.B., Han, Y., Burke, D.A., Xu, X.M., 2004. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol 189, 317-332.
Ibanez, C.F., 2010. Beyond the cell surface: new mechanisms of receptor function. Biochem Biophys Res Commun 396, 24-27.
Impellizzeri, D., Mazzon, E., Paterniti, I., Esposito, E., Cuzzocrea, S., 2012. Effect of fasudil, a selective inhibitor of Rho kinase activity, in the secondary injury associated with the experimental model of spinal cord trauma. J Pharmacol Exp Ther 343, 21-33.
Inada, T., Takahashi, H., Yamazaki, M., Okawa, A., Sakuma, T., Kato, K., Hashimoto, M., Hayashi, K., Furuya, T., Fujiyoshi, T., Kawabe, J., Mannoji, C., Miyashita, T., Kadota, R., Someya, Y., Ikeda, O., Hashimoto, M., Suda, K., Kajino, T., Ueda, H., Ito, Y., Ueta, T., Hanaoka, H., Takahashi, K., Koda, M., 2014. Multicenter prospective nonrandomized controlled clinical trial to prove neurotherapeutic effects of granulocyte colony-stimulating factor for acute spinal cord injury: analyses of follow-up cases after at least 1 year. Spine (Phila Pa 1976) 39, 213-219.
Inukai, T., Uchida, K., Nakajima, H., Yayama, T., Kobayashi, S., Mwaka, E.S., Guerrero, A.R., Baba, H., 2009. Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression. Spine (Phila Pa 1976) 34, 2848-2857.
Jain, A., Kim, Y.T., McKeon, R.J., Bellamkonda, R.V., 2006. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27, 497-504.
Jain, A., McKeon, R.J., Brady-Kalnay, S.M., Bellamkonda, R.V., 2011. Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One 6, e16135.
James, O.C., Little, A.R., 2002. The astrocyte response to neural injury, Site-Selective Neurotoxicity. CRC Press, pp. 233-265.
Jana, M., Dasgupta, S., Liu, X., Pahan, K., 2002. Regulation of tumor necrosis factor-alpha expression by CD40 ligation in BV-2 microglial cells. J Neurochem 80, 197-206.
Jeong, S.R., Kwon, M.J., Lee, H.G., Joe, E.H., Lee, J.H., Kim, S.S., Suh-Kim, H., Kim, B.G., 2012. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 233, 312-322.
Ji, X.C., Dang, Y.Y., Gao, H.Y., Wang, Z.T., Gao, M., Yang, Y., Zhang, H.T., Xu, R.X., 2015. Local Injection of Lenti-BDNF at the Lesion Site Promotes M2 Macrophage Polarization and Inhibits Inflammatory Response After Spinal Cord Injury in Mice. Cell Mol Neurobiol 35, 881-890.
Jin, K.L., Mao, X.O., Greenberg, D.A., 2000. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A 97, 10242-10247.
Jin, Y., Fischer, I., Tessler, A., Houle, J.D., 2002. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 177, 265-275.
Jones, L.L., Margolis, R.U., Tuszynski, M.H., 2003. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182, 399-411.
Jones, L.L., Tuszynski, M.H., 2002. Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J Neurosci 22, 4611-4624.
Jones, L.L., Yamaguchi, Y., Stallcup, W.B., Tuszynski, M.H., 2002. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 22, 2792-2803.
Kabadi, S.V., Stoica, B.A., Loane, D.J., Byrnes, K.R., Hanscom, M., Cabatbat, R.M., Tan, M.T., Faden, A.I., 2012. Cyclin D1 gene ablation confers neuroprotection in traumatic brain injury. J Neurotrauma 29, 813-827.
Kamiya, K., Koda, M., Furuya, T., Kato, K., Takahashi, H., Sakuma, T., Inada, T., Ota, M., Maki, S., Okawa, A., Ito, Y., Takahashi, K., Yamazaki, M., 2015. Neuroprotective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: a comparison with high-dose methylprednisolone as a historical control. Eur Spine J 24, 963-967.
Kaneko, S., Iwanami, A., Nakamura, M., Kishino, A., Kikuchi, K., Shibata, S., Okano, H.J., Ikegami, T., Moriya, A., Konishi, O., Nakayama, C., Kumagai, K., Kimura, T., Sato, Y., Goshima, Y., Taniguchi, M., Ito, M., He, Z., Toyama, Y., Okano, H., 2006. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12, 1380-1389.
Kaner, R.J., Worgall, S., Leopold, P.L., Stolze, E., Milano, E., Hidaka, C., Ramalingam, R., Hackett, N.R., Singh, R., Bergelson, J., Finberg, R., Falck-Pedersen, E., Crystal, R.G., 1999. Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol 20, 361-370.
Kang, M.K., Kang, S.K., 2008. Interleukin-6 induces proliferation in adult spinal cord-derived neural progenitors via the JAK2/STAT3 pathway with EGF-induced MAPK phosphorylation. Cell Prolif 41, 377-392.
Kanno, H., Ozawa, H., Sekiguchi, A., Itoi, E., 2009. The role of autophagy in spinal cord injury. Autophagy 5, 390-392.
Kanno, H., Pressman, Y., Moody, A., Berg, R., Muir, E.M., Rogers, J.H., Ozawa, H., Itoi, E., Pearse, D.D., Bunge, M.B., 2014. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci 34, 1838-1855.
Karachitos, A., Garcia Del Pozo, J.S., de Groot, P.W., Kmita, H., Jordan, J., 2013. Minocycline mediated mitochondrial cytoprotection: premises for therapy of cerebrovascular and neurodegenerative diseases. Curr Drug Targets 14, 47-55.
Karpiak, S.E., Li, Y.S., Mahadik, S.P., 1987. Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membrane function. Stroke 18, 184-187.
Karra, D., Dahm, R., 2010. Transfection techniques for neuronal cells. J Neurosci 30, 6171-6177.
Kato, H., Takahashi, A., Itoyama, Y., 2003. Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60, 215-221.
Kawabe, J., Koda, M., Hashimoto, M., Fujiyoshi, T., Furuya, T., Endo, T., Okawa, A., Yamazaki, M., 2011. Neuroprotective effects of granulocyte colony-stimulating factor and relationship to promotion of angiogenesis after spinal cord injury in rats: laboratory investigation. J Neurosurg Spine 15, 414-421.
Kettenmann, H., Hanisch, U.K., Noda, M., Verkhratsky, A., 2011. Physiology of microglia. Physiol Rev 91, 461-553.
Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J., Popovich, P.G., 2009. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29, 13435-13444.
Kim, B.J., Kim, M.J., Park, J.M., Lee, S.H., Kim, Y.J., Ryu, S., Kim, Y.H., Yoon, B.W., 2009a. Reduced neurogenesis after suppressed inflammation by minocycline in transient cerebral ischemia in rat. J Neurol Sci 279, 70-75.
Kim, H.M., Hwang, D.H., Lee, J.E., Kim, S.U., Kim, B.G., 2009b. Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 4, e4987.
Kim, H.S., Suh, Y.H., 2009. Minocycline and neurodegenerative diseases. Behav Brain Res 196, 168-179.
Kim, S.H., Smith, C.J., Van Eldik, L.J., 2004. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25, 431-439.
Kim, S.S., Jang, S.A., Seo, S.R., 2013. CREB-mediated Bcl-2 expression contributes to RCAN1 protection from hydrogen peroxide-induced neuronal death. J Cell Biochem 114, 1115-1123.
Kitagawa, H., Sasaki, C., Zhang, W.R., Sakai, K., Shiro, Y., Warita, H., Mitsumoto, Y., Mori, T., Abe, K., 1999. Induction of glial cell line-derived neurotrophic factor receptor proteins in cerebral cortex and striatum after permanent middle cerebral artery occlusion in rats. Brain research 834, 190-195.
Klaw, M.C., Xu, C., Tom, V.J., 2013. Intraspinal AAV Injections Immediately Rostral to a Thoracic Spinal Cord Injury Site Efficiently Transduces Neurons in Spinal Cord and Brain. Mol Ther Nucleic Acids 2, e108.
Klein, S.M., Behrstock, S., McHugh, J., Hoffmann, K., Wallace, K., Suzuki, M., Aebischer, P., Svendsen, C.N., 2005. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16, 509-521.
Knoblach, S.M., Huang, X., VanGelderen, J., Calva-Cerqueira, D., Faden, A.I., 2005. Selective caspase activation may contribute to neurological dysfunction after experimental spinal cord trauma. J Neurosci Res 80, 369-380.
Kobayashi, K., Imagama, S., Ohgomori, T., Hirano, K., Uchimura, K., Sakamoto, K., Hirakawa, A., Takeuchi, H., Suzumura, A., Ishiguro, N., Kadomatsu, K., 2013. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4, e525.
Kobayashi, N.R., Fan, D.P., Giehl, K.M., Bedard, A.M., Wiegand, S.J., Tetzlaff, W., 1997. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17, 9583-9595.
Koistinaho, M., Koistinaho, J., 2002. Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40, 175-183.
Kojima, A., Tator, C.H., 2002. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J Neurotrauma 19, 223-238.
Koliatsos, V.E., Clatterbuck, R.E., Winslow, J.W., Cayouette, M.H., Price, D.L., 1993. Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10, 359-367.
Kong, D.X., Jiang, Y.Y., Zhang, H.Y., 2010. Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 15, 884-886.
Kopp, M.A., Liebscher, T., Niedeggen, A., Laufer, S., Brommer, B., Jungehulsing, G.J., Strittmatter, S.M., Dirnagl, U., Schwab, J.M., 2012. Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res 349, 119-132.
Korte, M., Griesbeck, O., Gravel, C., Carroll, P., Staiger, V., Thoenen, H., Bonhoeffer, T., 1996. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci U S A 93, 12547-12552.
Korzus, E., Nagase, H., Rydell, R., Travis, J., 1997. The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J Biol Chem 272, 1188-1196.
Kovalchuk, Y., Holthoff, K., Konnerth, A., 2004. Neurotrophin action on a rapid timescale. Curr Opin Neurobiol 14, 558-563.
Kreutzberg, G.W., 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19, 312-318.
Krum, J.M., Mani, N., Rosenstein, J.M., 2002. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110, 589-604.
Krum, J.M., Mani, N., Rosenstein, J.M., 2008. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 212, 108-117.
Kuo, H.M., Lin, C.Y., Lam, H.C., Lin, P.R., Chan, H.H., Tseng, J.C., Sun, C.K., Hsu, T.F., Wu, C.C., Yang, C.Y., Hsu, C.M., Tai, M.H., 2012. PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling. Atherosclerosis 221, 341-349.
Lammertse, D.P., 2013. Clinical trials in spinal cord injury: lessons learned on the path to translation. The 2011 International Spinal Cord Society Sir Ludwig Guttmann Lecture. Spinal Cord 51, 2-9.
Lan, W.B., Lin, J.H., Chen, X.W., Wu, C.Y., Zhong, G.X., Zhang, L.Q., Lin, W.P., Liu, W.N., Li, X., Lin, J.L., 2014. Overexpressing neuroglobin improves functional recovery by inhibiting neuronal apoptosis after spinal cord injury. Brain Res 1562, 100-108.
Laplante, M., Sabatini, D.M., 2012. mTOR signaling in growth control and disease. Cell 149, 274-293.
Leal, M.C., Calado, R., Sheridan, C., Alimonti, A., Osinga, R., 2013. Coral aquaculture to support drug discovery. Trends Biotechnol 31, 555-561.
Ledda, F., Paratcha, G., Sandoval-Guzman, T., Ibanez, C.F., 2007. GDNF and GFR[alpha]1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat Neurosci 10, 293-300.
Lee, D.H., Lee, J.K., 2013. Animal models of axon regeneration after spinal cord injury. Neurosci Bull 29, 436-444.
Lee, H., McKeon, R.J., Bellamkonda, R.V., 2010. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 107, 3340-3345.
Lee, J.S., Yang, C.C., Kuo, Y.M., Sze, C.I., Hsu, J.Y., Huang, Y.H., Tzeng, S.F., Tsai, C.L., Chen, H.H., Jou, I.M., 2012. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Spine (Phila Pa 1976) 37, 10-17.
Lemons, M.L., Howland, D.R., Anderson, D.K., 1999. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 160, 51-65.
Lentz, T.B., Gray, S.J., Samulski, R.J., 2012. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 48, 179-188.
Lewandowski, G., Steward, O., 2014. AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 34, 9951-9962.
Li, M., Ona, V.O., Chen, M., Kaul, M., Tenneti, L., Zhang, X., Stieg, P.E., Lipton, S.A., Friedlander, R.M., 2000. Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 99, 333-342.
Li, Q., Verma, I.M., 2002. NF-[kappa]B regulation in the immune system. Nat Rev Immunol 2, 725-734.
Li, Y.H., Fu, H.L., Tian, M.L., Wang, Y.Q., Chen, W., Cai, L.L., Zhou, X.H., Yuan, H.B., 2016. Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-kappaB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 6, 19869.
Li, Y.X., Xu, Y., Ju, D., Lester, H.A., Davidson, N., Schuman, E.M., 1998. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 95, 10884-10889.
Li, Z.W., Tang, R.H., Zhang, J.P., Tang, Z.P., Qu, W.S., Zhu, W.H., Li, J.J., Xie, M.J., Tian, D.S., Wang, W., 2011. Inhibiting epidermal growth factor receptor attenuates reactive astrogliosis and improves functional outcome after spinal cord injury in rats. Neurochem Int 58, 812-819.
Liberto, C.M., Albrecht, P.J., Herx, L.M., Yong, V.W., Levison, S.W., 2004. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89, 1092-1100.
Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., Collins, F., 1993. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132.
Liu, B., Chen, H., Johns, T.G., Neufeld, A.H., 2006. Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J Neurosci 26, 7532-7540.
Liu, C., Wu, J., Xu, K., Cai, F., Gu, J., Ma, L., Chen, J., 2010a. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem 112, 1500-1512.
Liu, K., Lu, Y., Lee, J.K., Samara, R., Willenberg, R., Sears-Kraxberger, I., Tedeschi, A., Park, K.K., Jin, D., Cai, B., Xu, B., Connolly, L., Steward, O., Zheng, B., He, Z., 2010b. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13, 1075-1081.
Liu, X.Z., Xu, X.M., Hu, R., Du, C., Zhang, S.X., McDonald, J.W., Dong, H.X., Wu, Y.J., Fan, G.S., Jacquin, M.F., Hsu, C.Y., Choi, D.W., 1997. Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17, 5395-5406.
Liu, Y., Figley, S., Spratt, S.K., Lee, G., Ando, D., Surosky, R., Fehlings, M.G., 2010c. An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis 37, 384-393.
Liu, Y., Kim, D., Himes, B.T., Chow, S.Y., Schallert, T., Murray, M., Tessler, A., Fischer, I., 1999. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19, 4370-4387.
Liu, Z., Fan, Y., Won, S.J., Neumann, M., Hu, D., Zhou, L., Weinstein, P.R., Liu, J., 2007. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38, 146-152.
Loane, D.J., Byrnes, K.R., 2010. Role of microglia in neurotrauma. Neurotherapeutics 7, 366-377.
Lou, J., Lenke, L.G., Ludwig, F.J., O'Brien, M.F., 1998. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 36, 683-690.
Lu, M., Wang, S., Han, X., Lv, D., 2013. Butein inhibits NF-kappaB activation and reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 542, 87-91.
Lu, P., Jones, L.L., Tuszynski, M.H., 2005. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191, 344-360.
Mabuchi, T., Kitagawa, K., Kuwabara, K., Takasawa, K., Ohtsuki, T., Xia, Z., Storm, D., Yanagihara, T., Hori, M., Matsumoto, M., 2001. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21, 9204-9213.
Madinier, A., Bertrand, N., Mossiat, C., Prigent-Tessier, A., Beley, A., Marie, C., Garnier, P., 2009. Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS One 4, e8101.
Maeda, S., Kawamoto, A., Yatani, Y., Shirakawa, H., Nakagawa, T., Kaneko, S., 2008. Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Mol Pain 4, 65.
Mani, N., Khaibullina, A., Krum, J.M., Rosenstein, J.M., 2005. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol 192, 394-406.
Mao, L., Jia, J., Zhou, X., Xiao, Y., Wang, Y., Mao, X., Zhen, X., Guan, Y., Alkayed, N.J., Cheng, J., 2013. Delayed administration of a PTEN inhibitor BPV improves functional recovery after experimental stroke. Neuroscience 231, 272-281.
Marsala, M., Kakinohana, O., Yaksh, T.L., Tomori, Z., Marsala, S., Cizkova, D., 2004. Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia. Eur J Neurosci 20, 2401-2414.
Martin, J.B., 1999. Molecular basis of the neurodegenerative disorders. N Engl J Med 340, 1970-1980.
Martin, L.J., 2001. Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med 7, 455-478.
Martinez, F.O., Helming, L., Gordon, S., 2009. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27, 451-483.
Martins, A., Vieira, H., Gaspar, H., Santos, S., 2014. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12, 1066-1101.
Matsumoto, T., Tamaki, T., Kawakami, M., Yoshida, M., Ando, M., Yamada, H., 2001. Early complications of high-dose methylprednisolone sodium succinate treatment in the follow-up of acute cervical spinal cord injury. Spine (Phila Pa 1976) 26, 426-430.
Mattson, M.P., 2000. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1, 120-129.
McAdoo, D.J., Xu, G.Y., Robak, G., Hughes, M.G., 1999. Changes in amino acid concentrations over time and space around an impact injury and their diffusion through the rat spinal cord. Exp Neurol 159, 538-544.
McBride, J.L., Ramaswamy, S., Gasmi, M., Bartus, R.T., Herzog, C.D., Brandon, E.P., Zhou, L., Pitzer, M.R., Berry-Kravis, E.M., Kordower, J.H., 2006. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 103, 9345-9350.
McCann, M.J., O'Callaghan, J.P., Martin, P.M., Bertram, T., Streit, W.J., 1996. Differential activation of microglia and astrocytes following trimethyl tin-induced neurodegeneration. Neuroscience 72, 273-281.
McGeer, E.G., McGeer, P.L., 1997. The role of the immune system in neurodegenerative disorders. Mov Disord 12, 855-858.
McKeon, R.J., Hoke, A., Silver, J., 1995. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136, 32-43.
McKeon, R.J., Jurynec, M.J., Buck, C.R., 1999. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19, 10778-10788.
McKeon, R.J., Schreiber, R.C., Rudge, J.S., Silver, J., 1991. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11, 3398-3411.
McKillop, W.M., Dragan, M., Schedl, A., Brown, A., 2013. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia 61, 164-177.
McTigue, D.M., Horner, P.J., Stokes, B.T., Gage, F.H., 1998. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18, 5354-5365.
McTigue, D.M., Tripathi, R., Wei, P., Lash, A.T., 2007. The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 205, 396-406.
McTigue, D.M., Wei, P., Stokes, B.T., 2001. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21, 3392-3400.
Menei, P., Montero-Menei, C., Whittemore, S.R., Bunge, R.P., Bunge, M.B., 1998. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10, 607-621.
Meng, Q.Q., Liang, X.J., Wang, P., Wang, X.P., Yang, J.W., Wu, Y.F., Shen, H.Y., 2011. Rosiglitazone enhances the proliferation of neural progenitor cells and inhibits inflammation response after spinal cord injury. Neurosci Lett 503, 191-195.
Meuer, K., Pitzer, C., Teismann, P., Kruger, C., Goricke, B., Laage, R., Lingor, P., Peters, K., Schlachetzki, J.C., Kobayashi, K., Dietz, G.P., Weber, D., Ferger, B., Schabitz, W.R., Bach, A., Schulz, J.B., Bahr, M., Schneider, A., Weishaupt, J.H., 2006. Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson's disease. Journal of neurochemistry 97, 675-686.
Middeldorp, J., Hol, E.M., 2011. GFAP in health and disease. Prog Neurobiol 93, 421-443.
Minghetti, L., Levi, G., 1995. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J Neurochem 65, 2690-2698.
Miranda, J.D., White, L.A., Marcillo, A.E., Willson, C.A., Jagid, J., Whittemore, S.R., 1999. Induction of Eph B3 after spinal cord injury. Exp Neurol 156, 218-222.
Miyamoto, N., Maki, T., Shindo, A., Liang, A.C., Maeda, M., Egawa, N., Itoh, K., Lo, E.K., Lok, J., Ihara, M., Arai, K., 2015. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor. J Neurosci 35, 14002-14008.
Montaser, R., Luesch, H., 2011. Marine natural products: a new wave of drugs? Future Med Chem 3, 1475-1489.
Moskowitz, M.A., Lo, E.H., Iadecola, C., 2010. The science of stroke: mechanisms in search of treatments. Neuron 67, 181-198.
Munder, M., Eichmann, K., Moran, J.M., Centeno, F., Soler, G., Modolell, M., 1999. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163, 3771-3777.
Munro, M.H., Blunt, J.W., Dumdei, E.J., Hickford, S.J., Lill, R.E., Li, S., Battershill, C.N., Duckworth, A.R., 1999. The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70, 15-25.
Nagahara, A.H., Tuszynski, M.H., 2011. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10, 209-219.
Nakajima, K., Matsushita, Y., Tohyama, Y., Kohsaka, S., Kurihara, T., 2006. Differential suppression of endotoxin-inducible inflammatory cytokines by nuclear factor kappa B (NFkappaB) inhibitor in rat microglia. Neurosci Lett 401, 199-202.
Nakano, N., Nakai, Y., Seo, T.B., Homma, T., Yamada, Y., Ohta, M., Suzuki, Y., Nakatani, T., Fukushima, M., Hayashibe, M., Ide, C., 2013. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats. PLoS One 8, e73494.
Nakashima, S., Arnold, S.A., Mahoney, E.T., Sithu, S.D., Zhang, Y.P., D'Souza, S.E., Shields, C.B., Hagg, T., 2008. Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats. J Neurosci 28, 7293-7303.
Nakata, T., Kawachi, K., Nagashima, M., Yasugi, T., Izutani, H., Ryugo, M., Okamura, T., Shikata, F., Imagawa, H., Yano, H., Takahashi, H., Tanaka, J., 2011. Transient ischemia-induced paresis and complete paraplegia displayed distinct reactions of microglia and macrophages. Brain Res 1420, 114-124.
National-Spinal-Cord-Injury-Statistical-Center, 2016. Facts and Figures at a Glance. National Spinal Cord Injury Statistical Center, Birmingham, AL: University of Alabama at Birmingham.
Neary, J.T., Kang, Y., Tran, M., Feld, J., 2005. Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J Neurotrau
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.61.119
論文開放下載的時間是 校外不公開

Your IP address is 13.59.61.119
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code