Responsive image
博碩士論文 etd-0730115-231446 詳細資訊
Title page for etd-0730115-231446
論文名稱
Title
以溶膠凝膠法製備不同鍵結型態偶氮苯全像儲存材料之材料特性鑑定與分析
Synthesis and Characterization of Different-bonding Azobenzene-Based Holographic Storage Materials by Sol-Gel Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-27
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
鍵結效應、溶膠凝膠法、偶氮苯、全像儲存材料、表面起伏光柵
Holographic material, SRG, Azobenzene, Sol-gel process, Bonding effect
統計
Statistics
本論文已被瀏覽 5697 次,被下載 25
The thesis/dissertation has been browsed 5697 times, has been downloaded 25 times.
中文摘要
本研究利用不同鍵結型態:(1)離子鍵、(2)混摻,將偶氮苯分別接枝於同一種基材上,藉由雷射光激發,使偶氮苯分子進行順-反式的光異構化反應,製備出具有重複寫入能力的全像儲存材料。基材的選用為3-氨基丙基三乙氧基矽烷前驅物((3-Aminopropyl)triethoxysilane, APTES, 簡稱AP)。偶氮苯的選用為2-{[4-(二甲氨基)苯基]偶氮基}苯甲酸(2-{[4 (dimethylamino)phenyl]diazenyl}benzoic acid, Methyl Red, 簡稱MR)。
首先以MR與基材AP結合,分別以離子鍵及混摻型態二種鍵結形成複合材料,比較不同鍵結型態對表面起伏光柵的影響。UV-Vis鑑定MR在不同pH環境下的解離度曲線、及NMR鑑定APTES的質子化,交叉分析後得知,在pH = 6.3時的最大離子鍵鍵結率為88.4%,混摻則為0%。離子鍵材料的最大繞射效率8.89%,混摻型態沒有繞射效率。相較於實驗室團隊前人的相同材料,在pH = 8.32時離子鍵鍵結率16.5%,最大繞射效率37.2%及19%。最終以原子力顯微鏡分析,討論鍵結率對表面起伏光柵能力的效應,發現鍵結率高的材料擁有較小的表面起伏。
Abstract
The azobenzene-containing materials can be utilized as rewritable holographic storage media through laser-inducted cis-trans photoisomerization. In this study, the composites are fabricated by incorporating the azobenzene material (2-{[4-(dimethylamino)phenyl]diazenyl} benzoic acid, methyl red (MR) with (3-Aminopropyl)triethoxysilane, APTES (AP).
We study the bonding type effect on surface relief grating (SRG) formed by holographic inscription. They are: (1) ionic (IR), (2) doped (DR). Further material and optical characteristic are characterized by instrumental analysis. UV-Vis spectrometer verifies the pH-dependent dissociation curve of MR. NMR spectrometer verifies the protonation of APTES. We could determine the maximum bonding rate by cross-analysis, the IR and DR is 88.4% and 0%, respectively. Maximum diffraction efficiency of IR and DR is 8.89% and 0%, respectively. Comparing to predecessors’ work and related research, the maximum diffraction efficiency is 37.2% and 19% at pH = 8.32, bonding rate = 16.5%. In the end, AFM is used to analyze bonding rate effect on the performance of SRG. The material with higher bonding rate shows smaller surface relief extent.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
序 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 光學儲存技術 1
1.3 全像術 2
1.4 全像光柵 4
1.5 繞射效率 6
1.6 全像儲存技術 6
1.7 全像儲存材料 7
1.7.1 鹵化銀材料 7
1.7.2 光折變材料 9
1.7.3 光致聚合材料 10
1.7.4 光致變色材料 11
第二章 文獻回顧與原理 16
2.1 偶氮苯全像儲存材料之文獻回顧 16
2.2 偶氮苯全像儲存材料導論 25
2.3 偶氮苯全像儲存材料之特性 30
2.3.1 材料特性 30
2.3.2 光學特性 34
2.4 溶膠-凝膠法 35
2.4.1 反應機制 36
2.1.2 控制變因 37
(1) 溶劑種類與劑量: 37
(2) 水與前驅物莫耳比(R-ratio) 39
(3) pH環境、酸/鹼催化劑種類 40
第三章 研究方法 42
3.1 研究動機與提案 42
(1) 離子鍵部分 42
(2) 共價鍵部分 43
3.2 實驗藥品與材料 46
3.3 實驗流程 47
3.3.1 離子鍵型態材料IR製程 48
3.3.2 共價鍵型態材料CR製程 50
3.3.3 混摻型態材料DR製程 51
3.4 實驗儀器及分析方法 52
3.4.1 核磁共振光譜儀(NMR) 52
3.4.2 紫外-可見光光譜儀(UV-Visible Spectrometer) 52
3.4.3 原子力顯微鏡(Atomic Force Microscopy) 52
3.4.4 三維輪廓儀(Alpha-step Profilometer) 52
3.4.5 光功率計(Power Meter) 53
3.4.6 旋轉塗佈機(Spin Coater) 53
3.4.7 酸鹼度計(pH Meter) 53
3.5 全像光學系統 53
3.5.1 實驗設備 53
3.5.2 寫入與讀取 54
(1) 全像寫入實驗架構 54
(2) 全像讀取實驗架構 55
(3) 量測繞射效率 55
第四章 結果與討論 57
4.1 材料特性鑑定分析 57
4.1.1 紫外線與可見光光譜分析 57
4.1.2 核磁共振光譜儀分析 61
4.1.3 原子力顯微鏡分析 67
4.1.4 三維輪廓儀分析 70
4.2 光學特性鑑定分析 71
4.2.1 離子鍵型態材料IR繞射效率檢測 71
4.2.2 混摻型態材料DR繞射效率檢測 72
4.3 材料與光學特性綜合討論 73
(1) 鍵結效應:相同鍵結型態-材料IR與歷年研究團隊的比較 73
(2) 鍵結效應:不同鍵結型態-材料IR與DR的比較 74
第五章 結論 75
第六章 建議未來工作 76
(1) 導入離子鍵鍵結程度參數 76
(2) 導入溶膠-凝膠參數與鑑定分析 76
(3) 製作共價鍵型態材料CR全像干涉試片 76
參考文獻 77
參考文獻 References
1. Bruder, F. K.; Hagen, R.; Rolle, T.; Weiser, M. S.; Facke, T., From the Surface to Volume: Concepts for the Next Generation of Optical-Holographic Data-Storage Materials. Angewandte Chemie International Edition 2011, 50 (20), 4552-4573.
2. Gregg, D. P. In Patents and inventorship issues over the last thirty years of optical storage, 1997; pp 2-10.
3. Pohlman, K. C., The compact disc handbook. 2nd ed.; A-R Editions, Inc.: 1992.
4. Born, M. A. X.; Wolf, E., Elements of The Theory of Diffraction. In Principles of Optics, 6th ed.; Pergamon: 1980; pp 370-458.
5. GABOR, D., A New Microscopic Principle. Nature 1948, 161, 777-778.
6. Saleh, B. E. A.; Teich, M. C., Fourier Optics. In Fundamentals of Photonics, John Wiley & Sons, Inc.: 2001; pp 108-156.
7. Mehta, P. C.; Rampal, V. V., Laser and Holography. World Scientific: Singapore, 1993.
8. Klein, W. R.; Cook, B. D., Unified Approach to Ultrasonic Light Diffraction. IEEE Transactions on Sonics and Ultrasonics 1967, 14 (3), 123-134.
9. Kogelnik, H., Coupled Wave Theory for Thick Hologram Gratings. At&T Tech J 1969, 48 (9), 2909-2947.
10. Lan, W.-L. Matrix Effect of Azobenzene-based Holographic Storage Materials. Unpublished Matser Thesis, Natioanl Sun-Yat Sen University, Taiwan, 2016.
11. Sarid, D.; Schechtman, B. H., A Roadmap for Optical Data Storage Applications. Opt. Photon. News 2007, 18 (5), 32-37.
12. Geoffrey, W. B.; Hans, C.; John, A. H.; Jefferson, C. M.; Mark, J.; Brian, M.; Roger, M. M.; Robert, M. S., Optical data storage enters a new dimension. Physics World 2000, 13 (7), 37.
13. Japan-Broadcasting-Corporation-Science-&-Technology-Research-Laboratories. High-density Holographic Recording Technology. http://www.nhk.or.jp/strl/open2010/index.html (accessed online).
14. Graver, W. R.; Gladden, J. W.; Eastes, J. W., Phase holograms formed by silver halide (sensitized) gelatin processing. Appl. Opt. 1980, 19 (9), 1529-1536.
15. Su, W.-H., Fabrication Procedures of Embossed Hologram. In Lecture slides of "Fourier Optics", 2016.
16. Saleh, B. E. A.; Teich, M. C., Electro-Optics. In Fundamentals of Photonics, John Wiley & Sons, Inc.: 2001; pp 696-736.
17. Michael, R. G.; John, T. S., A review of the modelling of free-radical photopolymerization in the formation of holographic gratings. Journal of Optics A: Pure and Applied Optics 2009, 11 (2), 024008.
18. Bouas-Laurent, H.; Durr, H., Organic photochromism. Pure Appl Chem 2001, 73 (4), 639-665.
19. Fritzsche, J., Note sur les carbures d’hydrogène solides, tirés du gaudron de houille. Comptes Rendus de l'Académie des Sciences 1867, 69, 1035-1037.
20. Meer, H. E. t., Ueber Dinitroverbindungen der Fettreihe. Justus Liebigs Annalen der Chemie 1876, 181 (1), 1-22.
21. Phipson, T. L., Chemistry News 1881, 43, 283.
22. Marckwald, W. Z., Uber phototropie. Zeitschrift fur physik Chemie 1899, 30, 140-145.
23. Hirshberg, Y., Photochromy in the bianthrone series. Comptes Rendus de l'Académie des Sciences 1950, 231, 903-904.
24. Chen, C.-H. Synthesis and Characterization of Azobenzene / silica composites for optical applications. Unpublished Master Thesis, National Sun Yat-sen University, Taiwan, 2013.
25. Labarthet, F. L.; Freiberg, S.; Pellerin, C.; Pézolet, M.; Natansohn, A.; Rochon, P., Spectroscopic and Optical Characterization of a Series of Azobenzene-Containing Side-Chain Liquid Crystalline Polymers. Macromolecules 2000, 33 (18), 6815-6823.
26. Ichimura, K., Photoalignment of Liquid-Crystal Systems. Chemical Reviews 2000, 100 (5), 1847-1874.
27. Arri, P. Polymer-azobenzene complexes: from supramolecular concepts to efficient photoresponsive polymers. Doctoral Dissertation, Aalto University School of Science and Technology, Finland, 2009.
28. Yager, K. G.; Barrett, C. J., All-optical patterning of azo polymer films. Current Opinion in Solid State and Materials Science 2001, 5 (6), 487-494.
29. Tseng, Y.-P. Synthesis of Azobenzene-Based Composites and Its Optical Characterization. Unpublished Master Thesis, National Sun Yat-Sen Unviersity, Taiwan, 2014.
30. Wang, L.-Y. Synthesis and Characterization of Azobenzene with BAA, PPI or TPGA for Holographic Storage. Unpublished Master Thesis, National Sun Yat-Sen University, Taiwan, 2015.
31. Ueda, M.; Kim, H. B.; Ikeda, T.; Ichimura, K., Photoisomerization of an azobenzene in sol-gel glass films. Chemistry of Materials 1992, 4 (6), 1229-1233.
32. Bondi, A., Van Der Waals Volumes + Radii. J Phys Chem-Us 1964, 68 (3), 441-451.
33. Priest, W. J.; Sifain, M. M., Photochemical and thermal isomerization in polymer matrices: Azo compounds in polystyrene. Journal of Polymer Science Part A-1: Polymer Chemistry 1971, 9 (11), 3161-3168.
34. Victor, J. G.; Torkelson, J. M., On Measuring the Distribution of Local Free-Volume in Glassy-Polymers by Photochromic and Fluorescence Techniques. Macromolecules 1987, 20 (9), 2241-2250.
35. Mita, I.; Horie, K.; Hirao, K., Photochemistry in Polymer Solids .9. Photoisomerization of Azobenzene in a Polycarbonate Film. Macromolecules 1989, 22 (2), 558-563.
36. Kulikovska, O.; Goldenberg, L. M.; Kulikovsky, L.; Stumpe, J., Smart ionic sol-gel-based azobenzene materials for optical generation of microstructures. Chemistry of Materials 2008, 20 (10), 3528-3534.
37. Gallego-Gómez, F.; del Monte, F.; Meerholz, K., Mechanisms for High-Performance and Non-Local Photoisomerization Gratings in a Sol–Gel Material. Advanced Functional Materials 2013, 23 (30), 3770-3781.
38. Chaput, F.; Riehl, D.; Levy, Y.; Boilot, J. P., Azo Oxide Gels for Optical Storage. Chemistry of Materials 1993, 5 (5), 589-591.
39. Nakano, H.; Takahashi, T.; Kadota, T.; Shirota, Y., Formation of a surface relief grating using a novel azobenzene-based photochromic amorphous molecular material. Adv Mater 2002, 14 (16), 1157-1160.
40. Nirmal, K. V.; Srinivasan, B.; Lian, L.; Sukant, K. T.; Jayant, K., A Detailed Investigation of the Polarization-Dependent Surface-Relief-Grating Formation Process on Azo Polymer Films. Japanese Journal of Applied Physics 1999, 38 (10R), 5928.
41. Bhat, R. R.; Genzer, J., Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates. Nanotechnology 2007, 18 (2).
42. Jian-Hua, Z.; Qiong, L.; Yu-Miao, C.; Zhao-Qing, L.; Chang-Wei, X., Determination of Acid Dissociation Constant of Methyl Red by Multi-Peaks Gaussian Fitting Method Based on UV-Visible Absorption Spectrum. Acta Physico-Chimica Sinica 2012, 28 (05), 1030.
43. Tobey, S. W., The acid dissociation constant of methyl red. A spectrophotometric measurement. Journal of Chemical Education 1958, 35 (10), 514.
44. Oliveira, O. N.; dos Santos, D. S.; Balogh, D. T.; Zucolotto, V.; Mendonca, C. R., Optical storage and surface-relief gratings in azobenzene-containing nanostructured films. Adv Colloid Interfac 2005, 116 (1-3), 179-192.
45. Negi, A. S.; Anand, S. C., A Textbook of Physical Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim: 1985; p 584.
46. Ramette, R. W.; Kelly, P. W.; Dratz, E. A., Acid-Base Equilibria of Methyl Red. J Phys Chem-Us 1962, 66 (3), 527-532.
47. Atkins, P. W.; De Paula, J., Elements of physical chemistry. 5th ed.; Oxford University Press: Oxford ; New York, 2009; p 185.
48. Zhang, H.; He, H.-X.; Wang, J.; Mu, T.; Liu, Z.-F., Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy. Applied Physics A 1998, 66 (1), S269-S271.
49. Brinker, C. J.; Scherer, G. W., Introduction. In Sol-Gel Science, Academic Press: San Diego, 1990; pp xvi-18.
50. Brinker, C. J.; Scherer, G. W., Hydrolysis and Condensation II: Silicates. In Sol-Gel Science, Academic Press: San Diego, 1990; pp 96-233.
51. Voronkov, M. G.; Mileshkevich, V. P.; Yuzhelevski, Y. A., THE SILOXANE BOND, Physical Properties and Chemical Transformations. Consultants Bureau: New York, 1978.
52. Klein, L. C., Sol-Gel Processing of Silicates. Annual Review of Materials Science 1985, 15 (1), 227-248.
53. Pouxviel, J. C.; Boilot, J. P.; Beloeil, J. C.; Lallemand, J. Y., NMR study of the sol/gel polymerization. Journal of Non-Crystalline Solids 1987, 89 (3), 345-360.
54. Hench, L. L.; Ulrich, D. R., Science of Ceramic Chemical Processing. Wiley-Interscience: 1986; p 2-xxi, 594.
55. Pope, E. J. A.; Mackenzie, J. D., Sol-gel processing of silica: II. The role of the catalyst. Journal of Non-Crystalline Solids 1986, 87 (1–2), 185-198.
56. Wade, L. G., Carboxylic Acids. In Organic chemistry, 8th ed.; Boston : Pearson: 2013; p 966.
57. Kaur, G.; Jain, S.; Tiwary, A. K., Investigations on microbially triggered system for colon delivery of budesonide. Asian Journal of Pharmaceutical Sciences 2010, 5 (3), 96-105.
58. Hernández-Ainsa, S.; Alcalá, R.; Barberá, J.; Marcos, M.; Sánchez, C.; Serrano, J. L., Ionic Photoresponsive Azo-Codendrimer with Room Temperature Mesomorphism and High Photoinduced Optical Anisotropy. Macromolecules 2010, 43 (6), 2660-2663.
59. Wade, L. G., Amino Acids, Peptides, and Proteins. In Organic chemistry, 8th ed.; Boston : Pearson: 2013; pp 1182-1185.
60. Wang, X.; Vapaavuori, J.; Wang, X. X.; Sabat, R. G.; Pellerin, C.; Bazuin, C. G., Influence of Supramolecular Interaction Type on Photoresponsive Azopolymer Complexes: A Surface Relief Grating Formation Study. Macromolecules 2016, 49 (13), 4923-4934.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code