Responsive image
博碩士論文 etd-0730116-133617 詳細資訊
Title page for etd-0730116-133617
論文名稱
Title
步進直寫式近場靜電紡製藥物纖維開發與研究
The drug fibers for accurate stepping near field electrospinning application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-11
繳交日期
Date of Submission
2016-08-30
關鍵字
Keywords
傷口癒合、直寫近場靜電紡、載藥纖維、步進馬達分步控制、均勻實驗設計法
drug monofilament, wound healing, uniform experimental design, micro stepping control on stepper motor, DWs-NFES
統計
Statistics
本論文已被瀏覽 5737 次,被下載 0
The thesis/dissertation has been browsed 5737 times, has been downloaded 0 times.
中文摘要
本文由步進馬達分步控制來調整電紡溶液注射速率,使直寫近場靜電紡 (Direct writing system of near field electrospinning, DWs-NFES) 的聚己內酯 (Polycaprolactone, PCL) 與天然抗炎藥物 (F101) 混合溶液,經由均勻實驗設計法(Uniform experimental design) 的製程參數規劃與可控注射速率方式,製出具有助傷口癒合能力之穩定纖維載體結構,使生物傷口達到快速癒合。研究中利用DWs-NFES結合均勻設計法演算的製程參數,將預成載藥纖維的PCL/F101與乙酸乙酯 (Ethyl acetate, EA) 之溶液在16.77~32.79 %wt與接觸角43.72˚~84.68˚情況下,經0.001~0.016 ml/hr注射速率,導入0.05~0.35 mm內徑的針頭,在0.82~11.25 MV/m的高電場催促下迫使溶液突破表面張力進而形成泰勒錐 (Taylor cone),進而透過900~1200 mm/min X-Y軸移動速率與方向的控制,將泰勒錐射流形態沉積成網狀結構。最後經均勻設計法演算的DWs-NFES製程參數得知,在18.91 %wt 的PCL/F101溶液、 0.25 mm口徑之針頭、0.00571 ml/hr的注射速率、2.18 MV/m電場與936.6 mm/min平台移動速率的設計下,即可獲得0.89 μm的載藥單纖維線徑,其當步進馬達透過分步方式控制電紡溶液的注射時機與速率下,更可獲得0.68 μm載藥單纖維線徑。載藥單纖維在X-Y軸移動速率與方向的控制下沉積60 × 60 mm2的網狀結構,在與凝膠及純受傷的14天老鼠傷口癒合實驗相較下,在傷口癒合的曲線下面積 (Area under curve, AUC) 分析結果發現載藥單纖維高於凝膠及純受傷兩者約3.67倍,其由於網狀結構在單位面積內的纖維緻密度提升。因此證實在電紡溶液注射速率在精準的步進馬達分步控制下結合均勻設計法最佳演算的製程參數,即可降低載藥單纖維的線徑,進而提升單位面積內的纖維緻密度,以獲得更佳傷口癒合之能力。
Abstract
In this research, the electrospinning solution injection rate was controlled by micro stepping control on stepper motor, so that the mixed solution of polycaprolactone (PCL) and natural anti-inflammatory drugs in the direct writing system of near field electrospinning (DWs-NFES) can use the process parameters and controllable injection rate by uniform experimental design to produce stable fibrous support structure, which can help wound healing and achieve rapid biological wound healing. This study used DWs-NFES and combined with process parameters of uniform experimental design calculus. In the condition of the drug-loaded fiber PCL/F101 and ethyl acetate (EA) solution of 16.77~32.79 wt% and 43.72˚~84.68˚ contact angle, by injection rate of 0.001~0.016 ml/hr and the needle of inner diameter of 0.05~0.35 mm, under 0.82~11.25 MV/m high electric field has forced the solution to break through surface tension thus forming Taylor cone. Furthermore, through the X-Y axis direction control and moving speed of 900~1200 mm/min, the Taylor cone jet form deposited reticular. Finally, by DWs-NFES process parameters of uniform experimental design can find that at PCL/F101 solution at 18.91 wt%, needle’s inner diameter at 0.25 mm, injection rate at 0.00571 ml/hr, electric field at 2.18 MV/m and platform moving speed at 936.6 mm/min can reach 0.89 μm drug monofilament diameter. When stepper motor control the injection timing and speed of electrospinning by micro stepping control can reach 0.68 μm drug monofilament diameter. Drug monofilament deposited mesh structure 60 x 60 mm2 under the control of X-Y axis direction and rate of movement, compared with the gel and injured group in 14 days of wound healing experiment, the results of area under curve (AUC) find the drug monofilament is higher than the gel and injured group about 3.67 times, due to the deposited mesh structure upgrade the fiber density in unit area.It proves when the electrospinning solution injection rate was controlled by micro stepping control on stepper motor combined with process parameters of uniform experimental design calculus, the diameter of drug monofilament reduced and upgrade the fiber density in unit area to obtain the better ability of wound healing.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 xi
第一章 序論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 研究目的 4
第二章 文獻回顧 6
2.1 奈米材料的製備方法以藥物纖維作為敷料之優勢 6
2.2 靜電紡絲技術 7
2.3 PCL生物特性與生物降解探討 8
2.4 控制系統回路 11
2.5 控制系統的時域與頻域分析 12
2.5.1時域分析 12
2.5.2頻域分析 13
第三章 研究方法與步驟 14
3.1 實驗流程設計 14
3.2 PCL與藥物F101調配 16
3.3 溶液接觸角的量測 20
3.4 近場電紡技術與實驗儀器說明 23
3.4.1近場靜電紡絲製程理論 23
3.4.2近場靜電紡絲製程設備簡介 24
3.5 均勻實驗設計法 27
3.6 克利金模型插值法 (KRIGING METHOD)[44] 27
3.7 藥物纖維均勻實驗法設計 29
3.8 ATMEGA328P 晶片結合MKS TB6600驅動器修正溶液進給情況 32
3.9 LABVIEW、ATMEGA328P晶片與MKS TB6600的傳輸介面 36
3.10 老鼠實驗規劃 37
3.11 老鼠實驗器材簡介與處理傷口更換藥材流程 40
3.12老鼠傷口觀察與評估分析 41
第四章 結果與討論 43
4.1 PCL與F101混合溶液比例、接觸角及表面張力之關係 43
4.2 均勻設計法結果 46
4.3 KRIGING模型之反應曲面建立 48
4.4 均勻設計法與線性回歸分析 52
4.5 LABVIEW與ATMEGA328P晶片通訊協定 54
4.6 步進馬達控制回路 55
4.7 步進馬達微步控制與定位精度關係 62
4.8 三組控制條件下的藥物纖維緻密度比較 64
4.9 老鼠傷口恢復情況 68
第五章 結論與未來展望 74
參考文獻 76
參考文獻 References
[1] 江晃榮,“奈米生技/醫藥技術發展現況與未來”,工研院經資中心,2002。
[2] 蔡佩琳,“電紡絲聚己內酯多元醇(PCL)纖維支架中纖維特性對細胞貼附與增生影響之研究”,碩士論文,工程科技研究所,私立萬能科技大學,2010。
[3] L. Jeong, H.N. Kim, “Plasma-treated silk fibroin nanofibers for skin regeneration,” International Journal of Biological Macromolecules, pp. 222-228, 2009.
[4] B. Balu, V. Breedveld, “Fabrication of Roll-off and Sticky superhydrophobic cellulose surfaces via plasma processing,” Langmuir, pp. 4785-4790, 2008.
[5] 紡織產業綜合研究所,“機能性時尚紡織品形成策略聯盟之市場利基研析”,經濟部技術處產業技術知識服務計畫,2014。
[6] 靜電紡絲大聯盟,“ http://www.falcofes.com/product-list.asp”。
[7] Digitimes企劃,“智慧服飾產品的市場與技術發展趨勢” ,科技商情,2014。
[8] 中華民國專利檢索系統,“http://twpat.tipo.gov.tw/”,經濟部智慧財產局。
[9] G Luo, K. S. Teh, X.I. Zang, D.Z. Wu, Z.Y. Wen and L.W. Lin, “High aspect-ratio 3D microstructures via near-field electrospinning for energy storage applications,” IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp.29-32, 2016.
[10] G.I. Taylor, “Electrically driven jets,” Physical and Engineering Sciences, Vol. 313, pp. 453-475, 1969.
[11] 鄭佩綺,“全球高階傷口敷料市場發展概況”,工研院IEK,2010。
[12] 蘇紹宇,“用於傷口敷料之藻酸鹽/幾丁聚醣組合物的製備與性質探討”,碩士論文,藥物科技研究所,嘉南藥理科技大學,2010。
[13] 吳馨蘋,“以靜電紡絲法製備聚乳酸奈米纖維膜應用於高效率過濾之研究”,碩士論文,材料科學與工程系,國立臺灣科技大學,2014。

[14] 許銘軒,“靜電紡絲奈米纖維技術探討及其應用”,碩士論文,化學工程研究所,國立臺北科技大學,2014。
[15] 高子豪,“以靜電紡絲法製備高效能奈米纖維濾膜”,碩士論文,高分子工程研究所,國立台灣科技大學,2010。
[16] T. Grag, G. Rath, and A. K. Goyal, “Biomaterials-based nanofiber scaffold: Targeted and controlled carrier for cell and drug delivery,” Journal of Drug Targeting, 2014.
[17] K. C. Gupta, A. Haider, Y. R. Choi and I. K. Kang, “Nanofibrous scaffolds in biomedical applications,” Biomaterials Research, 2014.
[18] A. Formhals, US Patent, No. 1975504, 1934.
[19] C. Chang, Y.K. Fuh and L.W. Lin, “A direct-write piezoelectric PVDF nanogenerator,” Actuators and Microsystems Conference, pp. 1485-1488, 2009.
[20] C. Chang, V.H. Tran, J. Wang, Y. Fuh and L.W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano letters, Vol. 10, pp. 726-731, 2010.
[21] C. Chang, K. Limkrailassiri and L.W. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Applied Physics Letters, Vol. 93, 2008.
[22] J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of a direct write electrospun PVDF fiber,” IEEE 23rd International Conference, pp.1163-1166, 2010.
[23] J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuators A: Physical, Vol. 164, pp. 131-136, 2010.
[24] G Chang, X Zhu, R Warren, X Wang, T He, L Lin and J Shen, “Electrospinning of micro spiral fibers,” Materials Research Express, Vol. 1, No. 1, 2014.
[25] H.H. Lin, S. Manuel, “Anterior cruciate ligament regeneration using braided biodegradable scaffolds:in vitro optimization studies,” Biomaterials, Vol. 26, pp. 4805-4816, 2005.
[26] A.G.A. Coombes, S.C. Rizzi, “Precipitation casting of polycaprolaction of application in tissue engineering and drug delivery,” Biomaterials, Vol.25, pp. 315-325, 2004.
[27] T. Samardzic, N. Raicevic, “Tumor cell-specific inhibition of inducible nitric oxide synthase activation by tiazofurin,” International Immunopharmacology, Vol. 1, pp.795-802, 2001.
[28] A. Ballato, “Piezoelectricity: history and new thrusts,” Ultrasonics Symposium, Vol. 1, pp. 575-583, 1996.
[29] F. J. van Natta, J.W. Hill and W.H. Carothers, “Studies of Polymerization and Ring Formation. XXIII.1 ε-Caprolactone and its Polymers,” Journal of the American Chemical Society, Vol. 56, pp.455-457, 1934.
[30] R. Chandra and R. Rustgi, “Biodegradable polymers,” Progress in Polymer Science, Vol. 23, pp. 1273-1335, 1998.
[31] M Okada, “Chemical syntheses of biodegradable polymers,” Progress in Polymer Science, Vol. 27, pp. 87-133, 2007.
[32] L S. Nair, C T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, Vol. 32, pp. 762-798, 2007.
[33] M. A. Woodruff, D. W. Hutmacher, “The return of a forgotten polymer-Polycaprolactone in the 21st century,” Progress in Polymer Science, Vol.35, pp.1217-1256, 2010.

[34] K. Fujihara, M. Kotaki, S. Ramakrishna, “Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fiber,” Biomaterials, Vol. 26, pp. 4139-4147, 2005.
[35] N. T. Dai, M.R. Williamson, N. Khammo, E.F. Adams, A.G.A. Coombes, “Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin,” Biomaterials, Vol. 25, pp. 4263-4271, 2004.
[36] J. Venugopal and S. Ramakrishna, “Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration,” Tissue Engineering, Vol. 11, pp. 847-854, 2005.
[37] E Díaz, “Microbial biodegradation: genomics and molecular biology,” Caister Academic Press, 2008.
[38] 蘇明德,“能自動分解的塑膠-可降解塑膠”,科學發展,第448期,pp. 64-67,2010。
[39] 盧廷星、徐亦駿,“馬達轉速之PID控制”,專題論文,2006。
[40] B. C. Kuo, “Automatic control system,” Wiley, 2009。
[41] 方開泰,“均勻設計-數理方法在試驗設計中的應用”,概率統計通訊,Vol. 1, pp. 56-97,1978。
[42] 林晉禾,“應用均勻實驗設計與克利金差值法於自行車架之最佳化分析”,碩士論文,機械與自動化工程系,國立高雄第一科技大學,2012。
[43] 方開泰,“均勻設計與均勻設計表”,北京:科學出版社,1994。
[44] M. Li, G. Li, S. Azarm, “A kriging metamodel assisted multi-objective genetic algorithm for design optimization,” Journal of Mechanical Design, Vol. 130, 2008.
[45] D.G. Krige, “A statistical approach to some mine valuation and allied problems on the witwatersrand,” Thesis, Faculty of Engineering, University of Witatersrand, 1951.
[46] J. Sacks et al., “Design and analysis of computer experiments,” Statistical Science, Vol. 4, pp. 409-439, 1989.
[47] 如何控制四線步進馬達,“http://angel91250.pixnet.net/blog/post/21525085-如何控制四線步進馬達”,2013。
[48] G. C. Gurtner, S. Werner, Y. Barrandon and M. T. Longaker, “Wound Repair and Regeneration,” Nature, Vol. 453, pp. 314-321, 2008.
[49] A. Saito, H. Miyazaki, T. Fujie, S. Ohtsubo, M. Kinoshita, D. Saitoh, S. Takeoka “Therapeutic efficacy of an antibiotic-loaded nanosheet in a murine burn-wound infection model,” Acta Biomater, Vol. 8, pp. 2932-2940, 2012.
[50] 吳信誼、陳俊宏、黃世英、林源泉、溫志宏,“探討黑玉生肌散對於燒燙傷之治療作用”,台灣中醫醫學雜誌,第四期第九卷,2010。 
[51] H. M. Wang, Y. T. Chou, Z. H.g Wen, Z. R Wang, C. H. Chen and M. L. Ho, “Novel Biodegradable Porous Scaffold Applied to Skin Regeneration,” PLos One, Vol.8, pp. 8(6): e56330, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.234.6.167
論文開放下載的時間是 校外不公開

Your IP address is 54.234.6.167
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code