Responsive image
博碩士論文 etd-0730116-151603 詳細資訊
Title page for etd-0730116-151603
論文名稱
Title
(1)設計近紅外光窄峰共軛高分子點並應用在生物影像 (2)設計聚芴高分子點結合硼酸蒽螢光分子作為葡萄糖探針
(1) Molecular Engineering and Design of Semiconducting Polymers to Develop Polymer Dots with Narrow-Band, Near- Infrared Emission for In Vivo Biological Imaging (2) Design of PFO Pdots with Boronic Acid Based Anthracene Dyes for Glucose Sensing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-16
繳交日期
Date of Submission
2016-08-30
關鍵字
Keywords
共軛半導體高分子、葡萄糖偵測、窄峰、螢光探針、近紅外光、生物顯影
Bioimaging, Fluorescent Probes, Near Infrared, Semiconducting Polymer dots, Detection of Gucose, Narrow-band
統計
Statistics
本論文已被瀏覽 5708 次,被下載 64
The thesis/dissertation has been browsed 5708 times, has been downloaded 64 times.
中文摘要
近年來顯影技術越來越發達,不僅是應用在臨床診斷上,在研究領域上也有越來越多不同種類的顯影技術被發展出來。螢光顯影技術又是非常重要的技術之一,原因是螢光具有極佳的空間解析度與時間解析度 (spatial and time resolution),應用在不管是臨床上或是研究領域當中都是非常有利的工具,而螢光顯影當中共軛半導體高分子(簡稱pdots)是非常具有潛力的螢光探針,因其具有吸收截面係數和不錯的量子產率 (quantum yield)、極佳的光穩定性、低的細胞毒性、適當的奈米顆粒(小於30 nm)以及容易生物偶聯等優點使pdots非常適合利用於生物顯影當中。
目前已有許多不同波長的pdots已被設計出來,其中更包含近紅外光 (near infrared,簡稱NIR)的pdots,而近紅外光具有較高的穿透效率、對生物體較低的傷害、和生物體當中的自體螢光干擾 (autofluorescence)不重疊等等優點,因此應用在生物顯影當中是非常合適的,像我們實驗室學長姐們研究能夠將pdots的放光移到紅光以及近紅外光波段,然而目前此波段的pdots放光的半高峰大部分較寬 (80-150nm),若未來要應用在生物多重顯色影像的話,容易造成訊號的重疊誤判,因此設計窄峰、近紅外光且具有不錯的量子產率的pdots是非常重要的。而我的論文第一部分即是利用donor-bridge-acceptor的系統設計一系列的高分子,並且利用兩種不同的NIR窄峰的螢光染劑phthalocyanine、BODIPY希望藉由合成手法達到最佳的比例以及螢光性質並且利用在生物顯影上。
我的論文第二部分是利用高亮度的藍光PFO Pdots結合一個具有On/Off效果的葡萄糖偵測分子 (((((2-acetylanthracene-9,10-diyl)bis(methylene))-bis((2-aminoethyl)azanediyl))bis(methylene))bis(2,1-phenylene))diboronic acid(簡稱AAS),此分子在有葡萄糖存在下會去抓取葡萄糖產生結構上的改變,產生綠色螢光,而藉由PFO本身是高亮度的藍色螢光,剛好符合AAS的吸收範圍,希望藉由FRET能量傳遞使得AAS的綠色螢光再增強,藉此提高此螢光探針的靈敏度,希望能夠得到具有高靈敏度的葡萄糖螢光探針。
Abstract
Bioimaging techniques are not only important in clinical diagnosis but in research. As many bioimaging techniques are developed, fluorescence technique is one of the important bioimaging methods that is really useful in clinical diagnosis and research due to its good spatial resolution and time resolution. Semiconducting polymer dots (pdots) has the potential for bioimaging fluorescence probe because of its good quantum yield, high phtostability, suitable size for bioconjugation, low biotoxicity and tunable emission wavelengths. Pdots has drawn many scientist’s attentions due to its advantages and really suitable for in vitro/vivo bioimaging research.
  Reacently different wavelength pdots have been developed including near infrared emmition pdots. This is significant for bioimaging because near infrared has more penetration distance which can travel longer in the tissue and it can eliminate the autofluorescence of biomolecule in human body to reduce the noise. The most important of near infrared fluorescence probe, it is revatively lower energy than other wavelength fluorescence probe. However, the challenging part of developing NIR pdots is most NIR dyes with many π conjugated structures and benzenes tend to have π-π stacking in aggregation form that lead to ACQ effect (aggregation caused quenching) which cuase NIR dyes’ low quantum yield. Moreover, our lab has develop some NIR emission pdots, unfortunately the emission band was relatively broad (80-150 nm), and still challenging for multicolor bioimaging due to the emission section
cross-over.
  Therefore, my first section of this paper is that molecular engineering and design of semiconducting polymers to develop polymer dots as fluorescent probe with narrow-band, near- infrared emission for in vivo biological imaging. By using synthetic method, we develop polymer with donor-bridge-acceptor structure that the donor prvide basic steric hindrance and absorption of light for pdot; there are four bridges we used that have increasing bulky structure and they provide bulky side chain for pdots to prevent from ACQ effect; finally, we select two near-infrared dyes with narrow-band emission: pthalocyanine (Pc) and boron-dipyrromethene (BODIPY) as our acceptor. In this section, we optimized all combination of the donor、bridges、acceptors and come up with the best enrgy transfer ration of each polymer. Then we chose the best performance of the pdots for further experiment such as cell labeling、zebra fish bioimaging and
mice tumor tracking.
  Second section of this paper is design of PFO pdots with boronic acid based anthracene dyes for glucose sensing. Glucose concentration in human blood is really important in clinical diagnosis and daily follow-up for patients with cardiovascular disease. Therefore, the second section of this paper we combined PFO pdots that has 550 nm fluorescence and boronic acid based anthracene dye (AAS) that is a dye will turn on when chelate with glucoe and emits green fluorescence. The mechanism in this project is using the PFO pdots with good quantum yield to enhance the fluorescence of the AAS when it detected glucose through FRET mechanism in order to increase
the sensitibity of the detection of glucose.
  Ultimately, we want to develop pdots with AAS glucose sensor conbine with test paper in order to achieve point-of-care test. By using this test paper, people in home can easily use this paper to determine the blood sugar level and follow up the daily
detection for clinical diagnosis.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
中文摘要 iii
Abstract v
化學結構縮寫表 xiv
第一部分 1
第一章 前言 1
第二章 實驗 13
2-1實驗藥品 13
2-2實驗儀器 15
2-3合成部分 18
2-4 Pdots的製備方法 43
2-5 Bioconjugation 43
2-6細胞標記 46
2-7斑馬魚動物實驗 48
第三章 結果與討論 52
3-1設計與反應探討 52
3-2 Pdots製備以及顆粒大小 56
3-3光學性質探討 57
3-4莫爾吸收係數的計算 61
3-5單一顆粒亮度(Single particle brightness)與光穩定性(Photostability) 62
3-6專一標定細胞以及細胞毒性 65
3-7動物實驗-斑馬魚血管影像觀測 69
3-8腫瘤老鼠癌症長期偵測 70
第四章 結論 71
第五章 參考資料 72
第二部分 79
第一章 前言 79
第二章 實驗 80
2-1實驗器材 80
2-2實驗藥品 80
2-3合成部分 82
第三章 合成機制探討 85
第四章 結論 86
第五章 參考資料 86
附圖 88
第一部分 88
1H NMR of benzo[c][1,2,5]thiadiazole 88
1H NMR of 4,7-dibromobenzo[c][1,2,5]thiadiazole 89
1H NMR of 3-hexylthiophene 90
1H NMR of tributyl(4-hexylthiophen-2-yl)stannane 91
1H NMR of 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole 92
1H NMR of 4,7-bis(5-bromo-4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole 93
1H NMR of 1,2-bis(hexyloxy)benzene 94
1H NMR of 1,2-bis(hexyloxy)-4,5-dinitrobenzene 95
1H NMR of 5,6-bis(hexyloxy)benzo[c][1,2,5]thiadiazole 96
1H NMR of 4,7-dibromo-5,6-bis(hexyloxy)benzo[c][1,2,5]thiadiazole 97
1H NMR of 5,6-bis(hexyloxy)-4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole 98
1H NMR of 4,7-bis(5-bromo-4-hexylthiophen-2-yl)-5,6-bis(hexyloxy)benzo[c][1,2,5]thiadiazole 99
1H NMR of 2H-benzo[d][1,2,3]triazole 100
1H NMR of 2-hexyl-2H-benzo[d][1,2,3]triazole 101
1H NMR of 4,7-dibromo-2-hexyl-2H-benzo[d][1,2,3]triazole 102
1H NMR of 2-hexyl-4,7-bis(4-hexylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole 103
1H NMR of 4,7-bis(5-bromo-4-hexylthiophen-2-yl)-2-hexyl-2H-benzo[d][1,2,3]triazole 104
1H NMR of 1,4-dimethylpiperazine-2,3-dione 105
1H NMR of 1-bromo-3-(hexyloxy)benzene 106
1H NMR of 1,2-bis(3-(hexyloxy)phenyl)ethane-1,2-dione 107
1H NMR of (2,3-difluoro-1,4-phenylene)bis(trimethylsilane) 108
1H NMR of 1,4-dibromo-2,3-difluorobenzene 109
1H NMR of 1,4-dibromo-2,3-difluoro-5,6-dinitrobenzene 110
1H NMR of 3,6-dibromo-4,5-difluorobenzene-1,2-diamine 111
1H NMR of 5,8-dibromo-6,7-difluoro-2,3-bis(3-(hexyloxy)phenyl)quinoxaline 112
1H NMR of 6,7-difluoro-2,3-bis(3-(hexyloxy)phenyl)-5,8-bis(4-hexylthiophen-2-yl)quinoxaline 113
1H NMR of 5,8-bis(5-bromo-4-hexylthiophen-2-yl)-6,7-difluoro-2,3-bis(3-(hexyloxy)phenyl)quinoxaline 114
1H NMR of tert-butyl (2-(3,4-dicyanophenoxy)ethyl)carbamate 115
1H NMR of 2-{2′-[(tert-Butoxycarbonyl)amino]ethoxy}-9,16,23-tri-tertbutylphthalocyaninatoZinc(II) 116
1H NMR of 2,5-dioxopyrrolidin-1-yl 3,5-dibromobenzoate 117
1H NMR of 2-(2′-Aminoethoxy)-9,16,23-tri-tert-butylphthalocyaninato Zinc(II) 118
1H NMR of 4,7-dibromo-2-hexyl-5,6-dinitro-2H-benzo[d][1,2,3]triazole 119
1H NMR of 2-hexyl-4,7-bis(4-hexylthiophen-2-yl)-5,6-dinitro-2H-benzo[d][1,2,3]triazoe 120
1H NMR of 2-hexyl-4,7-bis(4-hexylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole-5,6-diamine 121
1H NMR of 2-hexyl-6,7-bis(3-(hexyloxy)phenyl)-4,9-bis(4-hexylthiophen-2-yl)-2H-[1,2,3]triazolo[4,5-g]quinoxaline 122
1H NMR of 4,9-bis(5-bromo-4-hexylthiophen-2-yl)-2-hexyl-6,7-bis(3-(hexyloxy)phenyl)-2H-[1,2,3]triazolo[4,5-g]quinoxaline 123
13C NMR of 5,6-bis(hexyloxy)-4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole 124
13C NMR of 4,7-bis(5-bromo-4-hexylthiophen-2-yl)-5,6-bis(hexyloxy)benzo[c][1,2,5]thiadiazole 125
13C NMR of 2-hexyl-4,7-bis(4-hexylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole 126
13C NMR of 4,7-bis(5-bromo-4-hexylthiophen-2-yl)-2-hexyl-2H-benzo[d][1,2,3]triazole 127
13C NMR of 2,5-dioxopyrrolidin-1-yl 3,5-dibromobenzoate 128
13C NMR of 2-(2′-Aminoethoxy)-9,16,23-tri-tert-butylphthalocyaninato Zinc(II) 129
第二部分 130
1H NMR of tert-butyl (2-aminoethyl)carbamate 130
1HNMR of 5,5-dimethyl-2-(o-tolyl)-1,3,2-dioxaborinane 131
1HNMR of 2-(2-(bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane 132
1HNMR of 1-(9,10-bis(bromomethyl)anthracen-2-yl)ethanone 134
1HNMR of di-tert-butyl ((((2-acetylanthracene-9,10-diyl)bis(methylene))bis(azanediyl))bis(ethane-2,1-diyl))dicarbamate 135










圖目錄
圖 1各種臨床醫學影像技術[1]。 1
圖 2各種生物顯影技術的時間解析度以及空間解析度比較[2]。 2
圖 3有機螢光染劑螢光導引腫瘤切除手術示意圖[6]。 3
圖 4各類型的螢光探針比較[4][5]。 4
圖 5 pdots發展歷[5]、[20]、[21]。 5
圖 6 各種合成共軛高分子的方法以及ACQ效應示意圖[7][8]。 7
圖 7 ACQ效應實際效果[36]。 7
圖 8製備pdots的方法,上方為再沉澱法下方為微乳液法[7]。 8
圖 9各種不同的pdots高分子結構以及螢光吸收圖[5]。 9
圖 10實驗室以前研究的pdots螢光圖,A圖為PFBT-DBSCIC6的pdots,B 圖為PF- Quinoxaline的pdots。 11
圖 11論文第一部分高分子結構示意圖。 11
圖 12 A光譜圖、B人體中具有螢光的生物分子、C進紅外光生物探針的優點。 12
圖 13 TBT單體合成步驟 18
圖 14 TAZ單體合成步驟 18
圖 15 TBTOC6單體合成步驟 18
圖 16 TC6FQ單體合成步驟 19
圖 17 Pc單體合成步驟 20
圖 18 Pc去鋅前以及去鋅後的吸收光譜圖 (PcZn去鋅前、Pc去鋅後)。 35
圖 19高分子合成條件 36
圖 20所有高分子合成後的結構圖,其比例僅代表下反應時比例。 39
圖 21 TaQ單體合成 40
圖 22配魚裝置圖。 48
圖 23孵化過程。 48
圖 24孵化之步驟五的流程解析圖。 49
圖 25如:紅色圈起來的地方的魚卵,明顯比其他顆小,表示為發育不良的卵。 49
圖 26毒性測試步驟一。 51
圖 27拍照前置步驟與藥品agarose 51
圖 28高分子形成pdots示意圖。 56
圖 29 DLS以及TEM得到的真實粒徑大小。 56
圖 30 A為Pc四種高分子結構、B為pdots吸收圖、C為pdots螢光圖。 58
圖 31 A為BODIPY四種高分子結構、B為pdots吸收圖、C為pdots螢光圖。 59
圖 32 A圖以時間相關單光子計數儀器測量的PF-TC6FQ-Pc的螢光lifetime。B圖是以時間相關單光子計數儀器測量的PF-TC6FQ-BODIPY的螢光lifetime。空心點為實際測量值,實線代表以雙指數衰減含數Fitting描繪的衰減曲線。 61
圖 33 PF-TC6FQ-BODIPY、PF-TC6FQ-Pc、Qdot705單一顆粒亮度數據圖:A、B、C為螢光顯微鏡下影像。D為三者的單一顆粒亮度平均值。E為亮度分布圖。F為在雷射照射下隨著時間螢光強度的變化。 64
圖 34細胞標定實驗流程圖以及跑膠結果圖。 65
圖 35 MTT assay下得到的細胞存活率與時間的關係。 66
圖 36 MCF-7細胞和PF-TC6FQ-BODIPY進行專一性吸附的影像。上方A、B、C圖分別為實驗組的細胞核染色、pdots螢光、bright view下影像;而下方D、E、F則為對照組的數據。 67
圖 37 HeLa細胞和PF-TC6FQ-BODIPY進行專一性吸附的細胞顯影影像。A、B為實驗組C、D則為對照組,紅色螢光圍pdots螢光,藍色為細胞核染色。 68
圖 38 A為斑馬魚存活率,下方照片為斑馬魚在不同濃度下的生長狀況。B為斑馬魚血管影像其中紅色螢光為pdots螢光,綠色螢光為斑馬魚本身的螢光。 69
圖 39 A圖為實驗流程簡圖、B、C分別為腫瘤長期追蹤的對照組以及實驗組。 70
圖 40葡萄糖螢光探針示意圖[1][4]。 80
圖 41 AAS合成 82


表目錄
表格 2各個單體的簡寫以及結構 54
表格 3 各個pdots的吸收、螢光、量子產率總表。 60
表格 4 PF-TC6FQ-Pc、PF-TC6FQ-BODIPY和其他螢光染劑光學性質比較。 63
參考文獻 References
第一部分參考資料

(1) van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat Med 2011, 17 (10), 1315-1319.

(2) Weissleder, R.; Pittet, M. J., Imaging in the era of molecular oncology. Nature 2008, 452 (7187), 580-589.

(3) Fernandez-Suarez, M.; Ting, A. Y., Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 2008, 9 (12), 929-943.

(4) Lim, S. Y.; Shen, W.; Gao, Z., Carbon quantum dots and their applications. Chemical Society Reviews 2015, 44 (1), 362-381.

(5) Wu, C.; Chiu, D. T., Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angewandte Chemie International Edition 2013, 52 (11), 3086-3109.

(6) Fukuzumi, S.; Ohkubo, K.; Ortiz, J.; Gutiérrez, A. M.; Fernández-Lázaro, F.; Sastre-Santos, Á., Control of Photoinduced Electron Transfer in Zinc Phthalocyanine−Perylenediimide Dyad and Triad by the Magnesium Ion. The Journal of Physical Chemistry A 2008, 112 (43), 10744-10752.

(7) Chan, Y.-H.; Wu, P.-J., Semiconducting Polymer Nanoparticles as Fluorescent Probes for Biological Imaging and Sensing. Particle & Particle Systems Characterization 2015, 32 (1), 11-28.

(8) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chemical Society Reviews 2011, 40 (11), 5361-5388.

(9) Pati, P. B.; Zade, S. S., MLCT based colorimetric probe for iron having D–A–D type architecture of benzo[2,1,3]thiadiazole acceptor and thiophene donor with azomethine pendant arm. Inorganic Chemistry Communications 2014, 39, 114-118.

(10) Han, L.-H.; Zhang, C.-R.; Zhe, J.-W.; Jin, N.-Z.; Shen, Y.-L.; Wang, W.; Gong, J.-J.; Chen, Y.-H.; Liu, Z.-J., Understanding the Electronic Structures and Absorption Properties of Porphyrin Sensitizers YD2 and YD2-o-C8 for Dye-Sensitized Solar Cells. International Journal of Molecular Sciences 2013, 14 (10), 20171-20188.

(11) Fu, J.; Yang, Y.; Zhang, X.-W.; Mao, W.-J.; Zhang, Z.-M.; Zhu, H.-L.,
Discovery of 1H-benzo[d][1,2,3]triazol-1-yl 3,4,5-trimethoxybenzoate as a potential antiproliferative agent by inhibiting histone deacetylase. Bioorganic & Medicinal Chemistry 2010, 18 (24), 8457-8462.

(l2) Chaurasia, S.; Ni, J.-S.; Hung, W.-I.; Lin, J. T., 2H-[1,2,3]Triazolo[4,5-c]pyridine Cored Organic Dyes Achieving a High Efficiency: a Systematic Study of the Effect of Different Donors and π Spacers. ACS Applied Materials & Interfaces 2015, 7 (39), 22046-22057.
(13) Balasingam, S. K.; Lee, M.; Kang, M. G.; Jun, Y., Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chemical Communications 2013, 49 (15), 1471-1487.

(14) Li, Y.; Chen, Y.; Liu, X.; Wang, Z.; Yang, X.; Tu, Y.; Zhu, X., Controlling Blend Film Morphology by Varying Alkyl Side Chain in Highly Coplanar Donor–Acceptor Copolymers for Photovoltaic Application. Macromolecules 2011, 44 (16), 6370-6381.

(15) Mueller-Westerhoff, U. T.; Zhou, M., Synthesis of Symmetrically and Unsymmetrically Substituted .alpha.-Diones from Organometallic Reagents and 1,4-Dialkylpiperazine-2,3-diones. The Journal of Organic Chemistry 1994, 59 (17), 4988-4992.

(16) An, C.; Li, M.; Marszalek, T.; Guo, X.; Pisula, W.; Baumgarten, M., Investigation of the structure-property relationship of thiadiazoloquinoxaline-based copolymer semiconductors via molecular engineering. Journal of Materials Chemistry C 2015, 3 (16), 3876-3881.

(17) Chen, C.-P.; Wu, P.-J.; Liou, S.-Y.; Chan, Y.-H., Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging. RSC Advances 2013, 3 (38), 17507-17514.

(18) Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S., Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chemical Society Reviews 2013, 42 (16), 6620-6633.

(19) Pu, K.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J.; Gambhir, S. S.; Bao, Z.; Rao, J., Semiconducting Polymer Nanoparticles as Photoacoustic Molecular Imaging Probes in Living Mice. Nature nanotechnology 2014, 9 (3), 233-239.

(20) Rong, Y.; Yu, J.; Zhang, X.; Sun, W.; Ye, F.; Wu, I. C.; Zhang, Y.; Hayden, S.; Zhang, Y.; Wu, C.; Chiu, D. T., Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters 2014, 3 (10), 1051-1054.

(21) Cha, J. N.; Birkedal, H.; Euliss, L. E.; Bartl, M. H.; Wong, M. S.; Deming, T. J.; Stucky, G. D., Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. Journal of the American Chemical Society 2003, 125 (27), 8285-8289.

(22) Tam, T. L.; Li, H.; Lam, Y. M.; Mhaisalkar, S. G.; Grimsdale, A. C., Synthesis and Characterization of [1,2,5]Chalcogenazolo[3,4-f]benzo[1,2,3]triazole and [1,2,3]Triazolo[3,4-g]quinoxaline Derivatives. Organic Letters 2011, 13 (17), 4612-4615.

(23) Ku, S.-Y.; Liman, C. D.; Burke, D. J.; Treat, N. D.; Cochran, J. E.; Amir, E.; Perez, L. A.; Chabinyc, M. L.; Hawker, C. J., A Facile Synthesis of Low-Band-Gap Donor–Acceptor Copolymers Based on Dithieno[3,2-b:2′,3′-d]thiophene. Macromolecules 2011, 44 (24), 9533-9538.

(24) Baek, M.-J.; Park, H.; Dutta, P.; Lee, W.-H.; Kang, I.-N.; Lee, S.-H., Development of naphthalene and quinoxaline-based donor–acceptor conjugated copolymers for delivering high open-circuit voltage in photovoltaic devices. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (8), 1843-1851.

(25) Chou, H.-H.; Chen, Y.-C.; Huang, H.-J.; Lee, T.-H.; Lin, J. T.; Tsai, C.; Chen, K., High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole. Journal of Materials Chemistry 2012, 22 (21), 10929-10938.

(26) Dang, D.; Chen, W.; Yang, R.; Zhu, W.; Mammo, W.; Wang, E., Fluorine substitution enhanced photovoltaic performance of a D-A1-D-A2 copolymer. Chemical Communications 2013, 49 (81), 9335-9337.

(27) Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W., Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer−Fullerene Solar Cells. Journal of the American Chemical Society 2011, 133 (12), 4625-4631.

(28) Charushin, V. N.; Kotovskaya, S. K.; Romanova, S. A.; Chupakhin, O. N.; Tomilov, Y. V.; Nefedov, O. M., 4,5-Difluoro-1,2-dehydrobenzene: generation and cycloaddition reactions. Mendeleev Communications 2005, 15 (2), 45-46.

(29) Zhao, B.; Liu, B.; Png, R. Q.; Zhang, K.; Lim, K. A.; Luo, J.; Shao, J.; Ho, P. K. H.; Chi, C.; Wu, J., New Discotic Mesogens Based on Triphenylene-Fused Triazatruxenes: Synthesis, Physical Properties, and Self-Assembly. Chemistry of Materials 2010, 22 (2), 435-449.

(30) Li, Z.; Lu, J.; Tse, S.-C.; Zhou, J.; Du, X.; Tao, Y.; Ding, J., Synthesis and applications of difluorobenzothiadiazole based conjugated polymers for organic photovoltaics. Journal of Materials Chemistry 2011, 21 (9), 3226-3233.

(31) Liu, X.; Cai, P.; Chen, Z.; Zhang, L.; Zhang, X.; Sun, J.; Wang, H.; Chen, J.; Peng, J.; Chen, H.; Cao, Y., D-A copolymers based on 5,6-difluorobenzotriazole and oligothiophenes: Synthesis, field effect transistors, and polymer solar cells. Polymer 2014, 55 (7), 1707-1715.

(32) Wąsik, R.; Wińska, P.; Poznański, J.; Shugar, D., Synthesis and Physico-Chemical Properties in Aqueous Medium of All Possible Isomeric Bromo Analogues of Benzo-1H-Triazole, Potential Inhibitors of Protein Kinases. The Journal of Physical Chemistry B 2012, 116 (24), 7259-7268.

(33) Barba-Bon, A.; Costero, A. M.; Gil, S.; Parra, M.; Soto, J.; Martinez-Manez, R.; Sancenon, F., A new selective fluorogenic probe for trivalent cations. Chemical Communications 2012, 48 (24), 3000-3002.

(34) Tanimoto, A.; Yamamoto, T., Nickel-2,2′-Bipyridyl and Palladium-Triphenylphosphine Complex Promoted Synthesis of New π-Conjugated Poly(2-hexylbenzotriazole)s and Characterization of the Polymers. Advanced Synthesis & Catalysis 2004, 346 (13-15), 1818-1823.

(35) Alzeer, J.; Roth, P. J. C.; Luedtke, N. W., An efficient two-step synthesis of metal-free phthalocyanines using a Zn(ii) template. Chemical Communications 2009, (15), 1970-1971.

(36) Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T. J.; Xu, F., Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics 2014, 54, 585-597.

第二部分參考資料

(1) Kawanishi, T.; Romey, M. A.; Zhu, P. C.; Holody, M. Z.; Shinkai, S., A Study of Boronic Acid Based Fluorescent Glucose Sensors. Journal of Fluorescence 2004, 14 (5), 499-512.

(2) Li, Y.; Xuan, J.; Xia, T.; Han, X.; Song, Y.; Cao, Z.; Jiang, X.; Guo, Y.; Wang, P.; Qin, L., Competitive Volumetric Bar-Chart Chip with Real-Time Internal Control for Point-of-Care Diagnostics. Analytical chemistry 2015, 87 (7), 3771-3777.

(3) Pickup, J. C.; Hussain, F.; Evans, N. D.; Rolinski, O. J.; Birch, D. J. S., Fluorescence-based glucose sensors. Biosensors and Bioelectronics 2005, 20 (12), 2555-2565.
(4) Marvin, J. S.; Hellinga, H. W., Engineering Biosensors by Introducing Fluorescent Allosteric Signal Transducers:  Construction of a Novel Glucose Sensor. Journal of the American Chemical Society 1998, 120 (1), 7-11.

(5) Badugu, R.; Lakowicz, J. R.; Geddes, C. D., Wavelength–Ratiometric Probes for the Selective Detection of Fluoride Based on the 6-Aminoquinolinium Nucleus and Boronic Acid Moiety. Journal of Fluorescence 2004, 14 (6), 693-703.

(6) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S., A Glucose-Selective Molecular Fluorescence Sensor. Angewandte Chemie International Edition in English 1994, 33 (21), 2207-2209.

(7) Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T. J.; Xu, F., Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics 2014, 54, 585-597.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code