Responsive image
博碩士論文 etd-0730116-152615 詳細資訊
Title page for etd-0730116-152615
論文名稱
Title
具容錯功能之可調光LED燈驅動電路
A Dimmable LED Driver with Fault Tolerance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-21
繳交日期
Date of Submission
2017-09-06
關鍵字
Keywords
升/降壓轉換器、車用照明、容錯、可調光發光二極體驅動電路、發光二極體
light-emitting diode (LED), step-up/down converter, vehicle lamp, fault tolerance, dimmable LED driver
統計
Statistics
本論文已被瀏覽 5673 次,被下載 16
The thesis/dissertation has been browsed 5673 times, has been downloaded 16 times.
中文摘要
本研究提出一個應用於車用照明具容錯功能之可調光發光二極體(Light-Emitting Diode, LED)驅動電路。電路架構結合降壓與升壓轉換器,藉由主動開關切換,可因應直流電源電壓變動與LED失效,操作於升壓或降壓模式;並可控制開關導通率,調節LED燈電流。論文首先分析電路升壓與降壓工作模式,推導電路設計方程式,經模擬驗證後,最後實際設計製作額定為16.5 W,由五顆LED串聯之車燈驅動電路。實驗結果證明,本文所提驅動電路具有寬範圍電壓與電流調變功能,可因應直流電源電壓在8 V到13.5 V之間變動;並於LED失效時,啟動容錯機制,切換操作模式,調節輸出電壓與電流。此升/降壓轉換器於輸出電壓越接近輸入電壓時效率越高,轉換效率最高為98.2 %;當輸入與輸出電壓差最大時,效率仍有78.8 %。
Abstract
A dimmable light-emitting diode (LED) driver with fault tolerance for the vehicle lamp is proposed. The conversion circuit of the driver combines a step-down converter and a step-up converter to cope with the variation of the input voltage and to allow for the failure of some LEDs by interchanging the associated active power switches and regulating the duty-ratios. The operation of the proposed step-up/down converter is analyzed, and then the design equations are derived accordingly. With verified simulation results, a laboratory circuit is designed for a 16.5 W vehicle lamp with five LEDs in series, which is powered by a dc source with wide input and output voltage ranges. Experimental results have demonstrated that the LED driver can swap the step-up and step-down functions and adjust the lamp current properly for an input voltage range from 8 V to 13.5 V with the one to five LEDs in operation. A high efficiency can be achieved in the case that the difference between the input voltage and the output voltage is small. The highest efficiency can be as high as 98.2 %. On the contrary, the efficiency deteriorated but remained at 78.8 % in the worst case.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 論文大綱 4
第二章 LED特性與驅動電路介紹 5
2-1 LED特性 5
2-2 電力電子轉換器於LED驅動電路之應用 9
第三章 驅動電路架構與分析 11
3-1 電路架構 11
3-2 降壓模式工作階段 12
3-3 升壓模式工作階段 15
3-4 降壓模式電路分析與方程式推導 18
3-5 升壓模式電路分析與方程式推導 22
3-6 設計流程 27
3-7 控制電路 29
第四章 電路設計與量測分析 34
4-1 電路參數設計 34
4-2 電路波形量測 36
4-3 容錯機制暫態波形 38
4-4 電路效率 44
4-5 輸出電流漣波因數 47
第五章 結論與未來研究方向 49
5-1 結論 49
5-2 未來研究方向 50
參考文獻 51
參考文獻 References
[1] J. Peck, G. Ashburner, and M. Schratz, “Solid State LED Lighting Technology for Hazardous Environments: Lowering Total Cost of Ownership while Improving Safety, Quality of Light And Reliability,” in Proc. IEEE PCIC EUROPE, pp. 1-8, June 2011.
[2] G. Shahzad, H. Yang, A. W. Ahmad, and C. Lee, “Energy-Efficient Intelligent Street Lighting System Using Traffic-Adaptive Control,” IEEE Sensors Journal, vol. 16, no.13, pp. 5397-5405, July 2016.
[3] M. M. U. Rehman, H. Shabbir, S. A. Rehman, S. K. Sheikh, and N. Zaffar, “A Comparative Analysis of Electrical and Photo Characteristics of LED Lights,” in Proc. IEEE FIT, pp. 219-224, Dec. 2012.
[4] N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, “Performance Characteristics of High-Power Light-Emitting Diodes,” in Proc. SPIE ICSSL, vol. 5187, pp. 267-275, Jan. 2004.
[5] S. J. Chang, L. W. Wu, Y. K. Su, C. H. Kuo, W. C. Lai, Y. P. Hsu, J. K. Sheu, J. F. Chen, and J. M. Tsai, “Si and Zn Co-Doped InGaN-GaN White Light-Emitting Diodes,” IEEE Trans. on Power Electronics, vol. 50, no. 2, pp. 519-521, Feb. 2003.
[6] Y. Gu, N. Narendran, and J. P. Freyssiner, “White LED Performance,” in Proc. SPIE ICSSL, vol. 5530, pp. 119-124, Oct. 2004.
[7] D. Gacio, J. Cardesin, E. L. Corominas, J. M. Alonso, M. Dalla-Costa, and A. J. Calleja, “Comparison Among Power LEDs for Automotive Lighting Applications,” in Proc. IEEE IAS, pp. 1-5, Oct. 2008.
[8] J. Zhou and W. Yan, “Experimental Investigation on the Performance Characteristics of White LEDs Used in Illumination Application,” in Proc. IEEE PESC, pp. 1436-1440, June 2007.
[9] M. F. Melo, W. D. Vizzotto, P. J. Quintana, A. L. Kirsten, M. A. Dalla Costa, and J. Garcia, “Bidirectional Grid-Tie Flyback Converter Applied to Distributed Power Generation and Street Lighting Integrated System,” IEEE Trans. on Industry Applications, vol. 51, no. 6, pp. 4709-4717, Nov./Dec. 2015.
[10] L. Corradini and G. Spiazzi, “A High-Frequency Digitally Controlled LED Driver for Automotive Applications with Fast Dimming Capabilities,” IEEE Trans. on Power Electronics, vol. 29, no. 12, pp. 6648-6659, Dec. 2014.
[11] W. F. Chen and K. W. E. Cheng, “New LED Lighting Design for Road Vehicles,” in Proc. IEEE PESA, pp.1-4, Dec. 2015.
[12] K. R. Cowan and T. U. Daim, “Understanding Adoption of Energy Efficiency Technologies: Applying Behavioral Theories of Technology Acceptance & Use to Understand the Case of LED Lighting for Commercial, Residential, and Industrial End-Users,” in Proc. IEEE PICMET, pp. 1-9, Aug. 2011.
[13] Y. Zhang and L. Nie, “The Situation and Prospect of LED Lighting Using in Building Illumination Design,” in Proc. IEEE MACE, pp. 3700-3701, July 2011.
[14] Y. Wang, Y. Guan, K. Ren, W. Wang, and D. Xu, “A Single-Stage LED Driver Based on BCM Boost Circuit and LLC Converter for Street Lighting System,” IEEE Trans. on Industrial Electronics, vol. 62, no. 9, pp. 5446-5457, Sep. 2015.
[15] H. J. Chiu and S. J. Cheng, “LED Backlight Driving System for Large-Scale LCD Panels,” IEEE Trans. on Industrial Electronics, vol. 54, no. 5, pp. 2751-2760, Oct. 2007.
[16] “Solar Powered LED Street Lighting,” On Semiconductor, 2007.
[17] B. Fleming, “Solid State Headlights,” IEEE Trans. on Vehicular Technology, vol. 3, no. 3, pp. 12-15, Sep. 2008.
[18] M. S. A. Chowdhury and A. M. Rahman, “Electric efficiency of the lighting technology of auto industry: Recent development and future prospect,” in Proc. IEEE ICDRET, pp. 1-5, Jan. 2016.
[19] J. P. Gerber, J. A. Oliver, N. Cordero, T. Harder, J. A. Cobos, M. Hayes, S. C. O’Mathuna, and E. Prem, “Power Electronics Enabling Efficient Energy Usage: Energy Savings Potential and Technological Challenges,” IEEE Trans. on Power Electronics, vol. 27, no. 5, pp. 2338-2353, May 2012.
[20] D. Guilbert, A. Gaillard, A. N'Diaye, and A. Djerdir, “Energy Efficiency and Fault Tolerance Comparison of DC/DC converters Topologies for Fuel Cell Electric Vehicles,” in Proc. IEEE ITEC, pp. 1-7, June 2013.
[21] Nirmal, P. K. Jain, and A. Kumar, “Interleaved DC to DC Buck Converter for Low Power Application,” in Proc. IEEE ICEPE, pp. 1-5, June 2015.
[22] C. H. Hsieh, T. J. Liang, L. S. Yang, R. L. Lin, and K. H. Chen, “Analysis and Implementation of a DC-DC Step-Down Converter for Low Output-Voltage and High Output-Current Applications,” in Proc. IEEE ISCAS, pp. 3697-3700, May 2010.
[23] F. marvi, E. Adib, and H. Farzanehfard, “Interleaved Zero Voltage Switching Coupled Inductor Buck Converter for Low Voltage-High Current Applications,” in Proc. IEEE PEDSTC, pp. 236-241, Feb. 2013.
[24] K. Bendaoud, J. Laassiri, S. D. Krit, and L. Maimouni, “Design and Simulation DC-DC Power Converters Buck and Boost for Mobile Applications using Matlab/Simulink,” in Proc. IEEE ICEMIS, pp. 1-6, Sep. 2016.
[25] A. Nahavandi, M. T. Hagh, M. B. B. Sharifian, and S. Danyali, “A Nonisolated Multiinput Multioutput DC-DC Boost Converter for Electric Vehicle Applications,” IEEE Trans. on Power Electronics, vol. 30, no. 4, pp. 1818-1835, May 2014.
[26] M. K. Yang and W. Y. Choi, “Design of High-Efficiency Power Conversion System for Low-Voltage Electric Vehicle Battery Charging,” in Proc. IEEE ICIT, pp. 289-294, Mar. 2014.
[27] C. H. Chang, E. C. Chang, C. A. Cheng, and C. L. Shen, “A Step-Up/Down Inverter Implemented with the Boost interleaved Buck-Boost DC-DC Converter,” in Proc. IEEE IFEEC, pp. 1-6. Nov. 2015.
[28] X. Perpiñà, R. J. Werkhoven, M. Vellvehi, J. Jakovenko, X. Jordà, J. M. G. Kunen, P. Bancken, and P. J. Bolt, “Thermal Analysis of LED Lamps for Optimal Driver Integration,” IEEE Trans. on Power Electronics, vol. 30, no. 7, pp. 3876- 3891, July 2015.
[29] W. Lin, Q. Zheng, Y. Xu, and Q. Zhang, “Temperature Effect on Performance and Reliability of QR Tapped-Inductor Buck LED Driver,” in Proc. IEEE PEAC, pp. 1397-1400, Nov. 2014.
[30] H. Akca, Y. Yasa, R. Ayaz, A. Durusu, A. Ajder, I. Nakir, and M. Tanrioven, “Thermal Management of Power LED System,” in Proc. IEEE ICRERA, pp. 760-764, Oct. 2014.
[31] Z. Zha, H. Wong, and Y. Han, “An LED Driver with Thermal Control Function,” in Proc. IEEE ICSICT, pp. 1-3, Oct. 2014.
[32] “EHP-AX08EL/LM01H-P01/2832 High Power LED - 1W,” Everlight Electronics.
[33] “MPA1967 Power Supply for LED,” Murata Electronics.
[34] “LP1013 AC to DC LED Power Supply 12 Watts,” High Perfection Technologies.
[35] M. Arias, D. G. Lamar, J. Sebastian, D. Balocco, and A. A. Diallo, “High-Efficiency LED Driver without Electrolytic Capacitor for Street Lighting,” IEEE Trans. on Industry Applications, vol. 49, no. 1, pp. 127-137, Jan./Feb. 2013.
[36] H. Dong, X. Xie, H. Chen, and Z. Jin, “A High Power Factor LED Driver Based on Improved Forward-Flyback without Electrolytic Capacitor,” in Proc. IEEE APEC, pp. 2404-2411, Mar. 2017.
[37] L. Wang, B. Zhang, D. Qiu, and L. Wang, “A Novel Flicker-Free AC-DC LED Driver without Electrolytic Capacitor,” in Proc. IEEE ICIT, pp. 370-375, Mar. 2017.
[38] Y. Zhang and K. Jin, “A Single-Stage Electrolytic Capacitor-Less AC/DC LED Driver,” in Proc. IEEE PEAC, pp. 881-886, Nov. 2014.
[39] S. Winder, Power Supplies for LED Driving. Oxford, U. K. Butterworth Heinemann, 2008.
[40] A. S. Sedra and K. C. Smith, Microelectronic Circuits. London, U. K. Oxford Univ. Press, 2004.
[41] R. L. Lee and Y. F. Chen, “Equivalent Circuit Model of Light-Emitting-Diode for System Analyses of Lighting Drivers,” in Proc. IEEE IAS. pp. 1-5, Oct. 2009.
[42] R. L. Lee, S. Y. Liu, C. C. Lee, and Y. C. Chen, “Taylor Series Expression Based Equivalent Circuit Models of LED for Analysis of LED Driver System,” IEEE Trans. on Industry Applications, vol. 49, no. 4, pp. 1854-1862, Aug. 2013.
[43] K. Fumagalli, R. Faranda, and L. Farnè, “Analysis of Possible LED Failure Mode,” in Proc. IEEE PCIC, pp. 1-8, June 2014.
[44] G. Lu, S. Yang, and Z. Lei, “Failure Analysis of LEDs,” in Proc. IEEE APM, pp. 69-72, Oct. 2011.
[45] F. Wu, W. Zhao, S. Yang, and C. Zhang “Failure Modes and Failure Analysis of White LEDs,” in Proc. IEEE ICEMI, pp. 4978-4981, Aug. 2009.
[46] C. S. Moo, Y. J. Chen, and W. C. Yang, “An Efficient Driver for Dimmable LED Lighting,” IEEE Trans. on Power Electronics, vol. 27, no. 11, pp. 4613-4618, Nov. 2012.
[47] C. S. Moo, Y. J. Chen, Y. J. Li, and H. C. Yen, “A Dimmable LED Driver with Partial Power Regulation,” in Proc. IEEE IECON, pp. 672-677, Nov. 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code