Responsive image
博碩士論文 etd-0730116-154517 詳細資訊
Title page for etd-0730116-154517
論文名稱
Title
Pr1-xSrxCoO3-δ 固態氧化物燃料電池陰極材料研究
A study of Pr1-xSrxCoO3-δ as cathode material for solid oxide fuel cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-08-30
關鍵字
Keywords
Ce0.9Gd0.1O2−δ(CGO)、Pr1-xSrxCoO3-δ(PSC)、界面阻抗、陰極、氧空缺含量
Ce0.9Gd0.1O2−δ(CGO), oxygen vacancies content, area specific resistance, cathodes, Pr1-xSrxCoO3-δ(PSC)
統計
Statistics
本論文已被瀏覽 5757 次,被下載 244
The thesis/dissertation has been browsed 5757 times, has been downloaded 244 times.
中文摘要
本研究主題為鈣鈦礦結構的Pr1-xSrxCoO3-δ (PSC, x=0.1, 0.3, 0.5, 0.7)作為陰極材料,PSC為具有良好的離子導性及電子導性之雙重導體材料。另以離子導體Ce0.9Gd0.1O2-δ(CGO)作為電解質材料。首先使用甘胺酸-硝酸鹽燃燒法(glycine-nitrate combustion, GNP)製備PSC及CGO粉末,並利用製備參數微調及X光繞射儀(X-ray diffraction, XRD)分析來製備出純相的PSC粉末,將所得的PSC粉末利用感應耦合電漿質譜分析儀 (inductively Coupled Plasma, ICP)做成份鑑定,確定製備出來的粉末成份與原始配方成份相同,再使用碘滴定法確定PSC粉末中鈷離子之價數以便決定氧空缺含量,其次將PSC粉末利用網印法製備成PSC/CGO/PSC對稱電池進行電化學量測,研究並探討鍶摻雜量及氧空缺含量對陰極阻抗的影響,最後將最佳成份之PSC製備成Ni-CGO/CGO/PSC全電池並進行全電池電化學量測。
Abstract
Perovskite oxide Pr1SrxCoO3- (PSC, x=0.1, 0.3, 0.5, 0.7) as a cathode material for solid oxide fuel cells (SOFC) will be studied in this work. PSC is a mixed conductor with high oxygen ion and electron conductivities. Ce0.9Gd0.1O1.95 (CGO) will be used as electrolyte. First, glycine-nitrate method will be used to prepare PSC and CGO powders. Preparation parameters will be adjusted to obtain pure PSC phase which will be verified by X-ray diffraction (XRD). Secondly, composition of the prepared PSC powder will be determined using inductively coupled plasma (ICP) mass spectrameter to check its deviation degree from the stoichiometry prescribed by mixing nitrate precursors. Thirdly, amount of oxygen vacancy in PSC will be determined using iodometric titration through the determination of valency of Co ions. Fourthly, PSC/CGO/PSC symmetrical cells will be prepared by screen-printing method. Electrochemical impedance spectra (EIS) will be measured to see the effect of Sr doping level and oxygen vancancy content on PSC cathode impedance. Finally, PSC with best composition will be employed to prepare Ni-CGO/CGO/PSC single cell and its power densities in 400-700°C will be measured to demonstrate the performance of PSC as cathode in a SOFC.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 前言 1
1-1 研究背景 1
1-2 研究動機 2
第二章 理論基礎與文獻回顧 3
2-1 燃料電池的發展 3
2-2 固態氧化物燃料電池結構 5
2-3 固態氧化物燃料電池工作原理 6
2-4 陰極類型 8
2-5 陰極材料Pr1-xSrxCoO3-δ(PSC) 10
2-5-1 PSC晶體結構 10
2-5-2 PSC材料導電性 11
2-5-3 PSC之XRD分析 14
2-5-4 PSC之TGA分析 16
2-6 電解質材料Ce0.9Gd0.1O2−δ(CGO) 17
2-7 陽極複合材料(Ni-CGO) 19
2-8 電化學理論 20
2-8-1 燃料電池的極化現象 20
2-8-2 歐姆極化(ohmic polarization) 21
2-8-3 活性極化(activation polarization) 21
2-8-4 濃度極化(concentration polarization) 22
2-8-5 交流阻抗之頻譜分析 23
第三章 實驗步驟與規劃 25
3-1 實驗規劃及流程 25
3-2 粉末製備 27
3-3 電解質及PSC圓片製備 29
3-4 Ni-CGO/CGO半電池製備 30
3-5 陰極製備 32
3-6 X光繞射儀分析(X-ray diffraction, XRD) 33
3-7 感應耦合電漿質譜儀分析(inductively coupled plasma, ICP) 33
3-8 碘滴定量測(iodometry titration) 34
3-9 熱重分析儀(thermogravimetry analysis, TGA) 35
3-10 掃描式電子顯微鏡分析(scanning electron microscopy, SEM) 36
3-11 對稱電池電化學特性量測 37
3-12 單電池電化學特性量測 39
3-13 實驗藥品 41
第四章 結果與討論 43
4-1 粉末分析 43
4-1-1 CGO粉末之XRD分析 43
4-1-2 PSC粉末之XRD分析 44
4-1-3 PSC粉末之ICP分析 47
4-1-4 PSC粉末之碘滴定分析 49
4-1-5 PSC粉末之TGA分析 51
4-2 PSC陰極之導電度分析 54
4-2-1 PSC離子導性與電子導性分析 54
4-2-2 PSC總導電度分析 56
4-3 PSC/CGO/PSC對稱電池研究 60
4-4 Ni-CGO/CGO/PSC單電池研究 64
4-4-1 Ni-CGO/CGO半電池製備 64
4-4-2 Ni-CGO/CGO/PSC單電池分析 67
第五章 結論 75
參考文獻 76
參考文獻 References
[1] O. Yamamoto, "Solid oxide fuel cells: fundamental aspects and prospects," Electrochimica Acta, vol. 45, pp. 2423-2435, 2000.
[2] I. Park, J. Choi, H. Lee, and D. Shin, "Optimization of Sm0.5Sr0.5CoO3−δ–Sm0.2Ce0.8O2−δ composite cathodes fabricated by electrostatic slurry spray deposition," Ceramics International, vol. 39, pp. 5561-5569, 2013.
[3] C. Zhu, X. Liu, C. Yi, L. Pei, D. Wang, D. Yan, et al., "High-performance PrBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cell," Journal of Power Sources, vol. 195, pp. 3504-3507, 2010.
[4] M. C. Williams, "Chapter 2 - Fuel Cells," Fuel Cells pp. 11-27, 2011.
[5] K. Kordesch and G. Simader, Fuel Cells and Their Applications, 1 ed.: Wiley-VCH, 1996.
[6] D. Y. Wang and A. S. Nowick, "Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as electrolyte," Journal of The Electrochemical Society, vol. 126, pp. 1155-1165, 1979.
[7] B. C. H. Steele, "Survey of materials selection for ceramic fuel cells," Solid State Ionics, vol. 86-88, pp. 1223-1234, 1996.
[8] S. M. Haile, "Fuel cell materials and components," Acta Materialia, vol. 51, pp. 5981-6000, 2003.
[9] N. Q. Minh, "Ceramic fuel cells," Journal of the American Ceramic Society, vol. 76 pp. 563-588, 1993.
[10] S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chemical Reviews, vol. 104, pp. 4791-4843, 2004.

[11] K. K. Hansen, "A-Site Deficient (Pr(0.6)Sr(0.4))(1-s)Fe(0.8)Co(0.2)O(3-delta) Perovskites as Solid Oxide Fuel Cell Cathodes," Journal of the Electrochemical Society, vol. 156, pp. B1257-B1260, 2009.
[12] J. H. Kim, S. W. Baek, C. Lee, K. Park, and J. Bae, "Performance analysis of cobalt-based cathode materials for solid oxide fuel cell," Solid State Ionics, vol. 179, pp. 1490-1496, 2008.
[13] G. C. Kostogloudis, N. Vasilakos, and C. Ftikos, "Crystal structure, thermal and electrical properties of Pr1-xSrxCoO3-delta (x = 0, 0.15, 0.3, 0.4, 0.5) perovskite oxides," Solid State Ionics, vol. 106, pp. 207-218, 1998.
[14] S. Lee, N. Miller, M. Staruch, K. Gerdes, M. Jain, and A. Manivannan, "Pr0.6Sr0.4CoO3-delta electrocatalyst for solid oxide fuel cell cathode introduced via infiltration," Electrochimica Acta, vol. 56, pp. 9904-9909, 2011.
[15] K. Park, C. Lee, J. Bae, and Y. Yoo, "Structural and electrochemical properties of Pr0.3Sr0.7Co0.3Fe0.7O3-delta cathode for IT-SOFC," International Journal of Hydrogen Energy, vol. 34, pp. 6852-6860, 2009.
[16] S. Park, S. Choi, J. Shin, and G. Kim, "Electrochemical investigation of strontium doping effect on high performance Pr1-xSrxCoO3-delta (x=0.1, 0.3, 0.5, and 0.7) cathode for intermediate-temperature solid oxide fuel cells," Journal of Power Sources, vol. 210, pp. 172-177, 2012.
[17] C. Rossignol, J. M. Ralph, J. M. Bae, and J. T. Vaughey, "Ln(1-x)Sr(x)CoO(3) (Ln=Gd, Pr) as a cathode for intermediate-temperature solid oxide fuel cells," Solid State Ionics, vol. 175, pp. 59-61, 2004.
[18] C. J. Zhu, X. M. Liu, D. Xu, D. T. Yan, D. Y. Wang, and W. H. Su, "Preparation and performance of Pr0.7Sr0.3Co1-yCuyO3-delta as cathode material of IT-SOFCs," Solid State Ionics, vol. 179, pp. 1470-1473, 2008.
[19] S. B. Adler, "Factors governing oxygen reduction in solid oxide fuel cell cathodes," Chem Rev, vol. 104, pp. 4791-843, 2004.
[20] Y. Wang, T. Mori, J. G. Li, and J. Drennan, "Synthesis, characterization, and electrical conduction of 10mol% Dy2O3-doped CeO2 ceramics," Journal of the European Ceramic Society, vol. 25, pp. 949-956, 2005.
[21] V. Grover and A. K. Tyagi, "Phase relations, lattice thermal expansion in CeO2–Gd2O3 system, and stabilization of cubic gadolinia," Materials Research Bulletin, vol. 39, pp. 859-866, 2004.
[22] S. Bebelis, V. Kournoutis, A. Mai, and F. Tietz, "Cyclic voltammetry of La0.78Sr0.2FeO3−δ and La0.78Sr0.2Co0.2Fe0.8O3−δ electrodes interfaced to CGO/YSZ," Solid State Ionics, vol. 179, pp. 1080-1084, 2008.
[23] H. Inaba and H. Tagawa, "Ceria-based solid electrolytes," Solid State Ionics, vol. 83, pp. 1-16, 1996.
[24] J. A. Kilner and R. J. Brook, "A Study of Oxygen ion conductivity in doped non-stoichiometric oxides," Solid State Ionics, vol. 6, pp. 237-252, 1982.
[25] A. J. Bard and L. R. Faulkener, Electrochemical Methods- Fundamental and Applications, 2 ed.: Wiley, 2001.
[26] L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, "Glycine Nitrate Combustion Synthesis of Oxide Ceramic Powders," Materials Letters, vol. 10, pp. 6-12, 1990.
[27] 李珠, "感應耦合電漿質譜儀技術及其在材料分析上的應用" 工業材料雜誌, vol. 10, pp. 87-93, 2002.
[28] K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, "Oxygen content determination in perovskite-type cobaltates," Materials Research Bulletin, vol. 40, pp. 257-263, 2005.
[29] Y. M. Guo, H. G. Shi, R. Ran, and Z. P. Shao, "Performance of SrSc0.2Co0.8O3-delta + Sm0.5Sr0.5CoO3-delta mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures," International Journal of Hydrogen Energy, vol. 34, pp. 9496-9504, 2009.
[30] M. Karppinen, M. Matvejeff, K. Salomaki, and H. Yamauchi, "Oxygen content analysis of functional perovskite-derived cobalt oxides," Journal of Materials Chemistry, vol. 12, pp. 1761-1764, 2002.
[31] I. Riess, "Theoretical Treatment of the Transport-Equations for Electrons and Ions in a Mixed Conductor," Journal of the Electrochemical Society, vol. 128, pp. 2077-2081, 1981.
[32] S. C. Singhal, "Advances in solid oxide fuel cell technology," Solid State Ionics, vol. 135, pp. 305-313, Nov 2000.
[33] P.-H. Hsu, "Preparation of proton-conducting solid oxide fuel cells and mechanism study of oxygen reduction reaction in associated " doctorate dissertation, National Sun Yat-sen University, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code