Responsive image
博碩士論文 etd-0730117-171326 詳細資訊
Title page for etd-0730117-171326
論文名稱
Title
以電子束微影技術研製高頻表面聲波元件
Fabrication of high frequency SAW devices using e-beam lithography technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-08-30
關鍵字
Keywords
氧化鋅、電子束微影技術、層狀結構、氮化鋁、表面聲波元件
surface acoustic wave, AlN, ZnO, e-beam lithography technology
統計
Statistics
本論文已被瀏覽 5665 次,被下載 31
The thesis/dissertation has been browsed 5665 times, has been downloaded 31 times.
中文摘要
本研究為實現可操作於高頻段之高頻表面聲波元件,以電子束微影技術縮小指叉式電極的線寬,並以IDT/ZnO/AlN/Si3N4/Si的結構製作表面聲波元件以提高元件之聲波波速。
本研究以射頻磁控濺鍍法在Si3N4/Si上沉積氮化鋁(AlN)及氧化鋅(ZnO)壓電薄膜,藉由調變沉積參數進行物性分析以獲得較佳的壓電薄膜,並製作AlN/Si3N4/Si、ZnO/Si3N4/Si、ZnO/AlN/Si3N4/Si結構做為比較。使用鋁(Al)作為電極,並以電子束微影定義線寬為490 nm、延遲線為32λ及64λ之IDT圖形,再以ICP乾式蝕刻完成電極圖形,並去除電子阻劑後完成SAW元件。研究結果顯示,以IDT/ZnO/AlN/Si3N4/Si為結構,其延遲線為32λ所完成之元件,其中心頻率為2.33 GHz,而插入損失為-23.5 dB。與單壓電層元件做比較,其波速與頻率響應均有優化的表現。
Abstract
In this study, high-frequency surface acoustic wave (SAW) devices were fabricated by using e-beam lithography technology to contract IDTs. The IDT/ZnO/AlN/Si3N4/Si structure was used to increase acoustic wave velocity and electromechanical coupling coefficient.
To fabricate SAW devices, the piezoelectric thin films (AlN and ZnO) were deposited on Si3N4/Si substrate which adopted the RF magnetron sputtering method. The crystalline characteristics were investigated and optimized by adjusting the sputtering parameters. The structures of SAW devuces with AlN/Si3N4/Si, ZnO/Si3N4/Si and ZnO/AlN/Si3N4/Si were fabricated and the frequency response were compared. After the piezoelectric thin films were formed, the Al thin films were deposited on the piezoelectric thin films using DC sputtering system. Then, the IDT electrodes were achieved for line width of 490 nm and delay line width of 32λ and 64λ which using e-beam lithography technology and ICP etching technology. The center-frequencies of 2.33 GHz and the insertion loss of -23.5dB can be obtained through SAW devices of IDT/ZnO/AlN/Si3N4/Si structure. Comparing with SAW device of single piezoelectric thin film, the dual-piezoelectric thin films devices showed optimal frequency response.
目次 Table of Contents
中文審定書 i
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究背景與動機 1
1.2 表面聲波元件 2
1.3 研究內容 5
第二章 理論分析 6
2.1 壓電效應 6
2.1.1 壓電效應 7
2.1.2 壓電材料 8
2.2 氮化鋁結構與特性 9
2.3 氧化鋅之特性與結構 12
2.4 反應性射頻磁控濺鍍原理 14
2.4.1 輝光放電 14
2.4.2 磁控濺鍍 15
2.4.3 射頻濺鍍 17
2.4.4 反應性濺鍍 17
2.5 薄膜成長機制 18
2.6 電子束微影製程技術 20
2.7 乾式蝕刻製程 21
2.8 表面聲波元件理論與特性 22
2.8.1 表面聲波元件基本設計與特性 23
2.8.2 Rayleigh wave 25
2.9 表面聲波元件種類 27
2.9.1 共振型表面聲波元件 27
2.9.2 延遲型表面聲波元件 28
2.9.3 表面聲波濾波器 28
2.10 表面聲波元件參數性質 30
2.10.1 聲波波速 30
2.10.2 插入損失 30
2.10.3 機電耦合係數 32
第三章 實驗 33
3.1 實驗流程 33
3.2 基板清洗 35
3.3 薄膜沉積 35
3.3.1 射頻磁控濺鍍系統 35
3.3.2 直流磁控濺鍍系統 39
3.4 薄膜物性分析 40
3.4.1 X-ray 繞射分析 40
3.4.2 掃描式電子顯微鏡 41
3.4.3 原子力顯微鏡 42
3.5 調變壓電層結構 43
3.6 電子束微影製程 43
3.7 ICP乾式蝕刻製程 45
3.8 SAW元件網路分析儀量測 46
第四章 結果與討論 47
4.1 於Si3N4上沉積AlN薄膜之特性分析 47
4.1.1 濺鍍功率 47
4.1.2 濺鍍壓力 49
4.2 於Si3N4上沉積ZnO薄膜之特性分析 52
4.2.1 濺鍍壓力 52
4.3 於AlN上沉積ZnO薄膜之特性分析 55
4.3.1 濺鍍功率 55
4.3.2 濺鍍壓力 58
4.4 電子束微影製程 60
4.5 ICP蝕刻 62
4.6 元件頻率響應 63
第五章 結論 68
參考文獻 70
參考文獻 References
[1]. 彭冠庭,“以IDT/ZnO/AlN/Si3N4/Si結構研製雙頻表面聲波元件”,國立中山大學電機工程研究所碩士論文,2014。
[2]. (資料庫):5G給射頻前端晶片帶來的新改革(2017-3-11)。取自:http://www.readhouse.net/articles/253955454/
[3]. L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proceedings London Mathematical Society, vol. 17, pp.4-11, 1885.
[4]. R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to eleastic waves,” Applied Physics Letters, vol. 7, pp.314-316, 1965.
[5]. 沈靜怡,“Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究”,國立中山大學電機工程研究所碩士論文,2012。
[6]. L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, F.Y. Jiang, “MOCVD growth of ZnO films on Si(1 1 1) substrate using a thin AlN buffer layer” , Journal of Crystal Growth , vol. 284 , pp.459–463,2005
[7]. M. Purica, E. Budianu, E. Rusu, M. Danila and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403 , pp. 485-488, 2002.
[8]. Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402 , pp. 302-306, 2002.
[9]. Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu and S. Yang, “X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition,” Journal of Crystal Growth, vol. 252 , pp. 180-183, 2003.
[10]. Yang, C.M.Uehara, K.Kim, S.K, Kameda, S,Nakase, H.Tsubouchi, “Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter.”, IEEE Ultrasonics Symposium, vol.1 , pp.170-173 , 2003.
[11]. Mastro, M.A. Eddy, C. R. “MOCVD growth of thick AlN and GaN superlattice structures on Si substrates.” Journal of Crystal Growth, vol.287 , pp. 610-614, 2006.
[12]. Schenk, H.P.D.Kaiser, U.Kipshidze, G.D, Fissel, A.Krulich, J.Hobert, H.Schulze, “Growth of atomically smooth AlN films with a 5: 4 coincidence interface on Si (111) by MBE.”Materials Science and Engineering, pp. 84-87, 1999.
[13]. Mansurov,V.G.Nikitin,A.Y.Galitsyn,Y.G.Svitasheva,S.N.Zhuravlev,L.Horvath, Z.E.&Pecz, B.“AlN growth on sapphire substrate by ammonia MBE.”J Journal of Crystal Growth, vol. 300 , 145-150, 2007.
[14]. Y. Heo, D. Norton and S. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,” Journal of Applied Physics, vol. 98, pp. 073502-1 – 073052-6, 2005.
[15]. K. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by rf magnetron sputtering,” Thin Solid Films, vol. 295 , pp. 87-91, 1997
[16]. Kao, K. S. Cheng, C. C. “Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave.” Applied Physics,2001.
[17]. Assouar, M. B. Elmazria, O.Le Brizoual, L. Alnot, “Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices.” ,Diamond and related materials , vol.11 ,2002.
[18]. C. Wang, Z. Ji, K. Liu, Y. Xiang and Z. Ye, “p-Type ZnO thin films prepared by oxidation of Zn3N2thin films deposited by DC magnetron sputtering,” Journal of Crystal Growth, vol. 259, pp. 279-281, 2003.
[19]. J.Curie and P.curie, “ Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined faces”, Applied Sciences,vol.3, pp.93,1880.
[20]. W.G.HankelandAbh.Sachs,“Piezoelectric”AppliedSciences,vol.12 ,pp.547.1
[21]. 吳朗,“電子陶瓷-壓電陶瓷”,全欣資訊圖書,1994。881.
[22]. 林上懷,“於鉭酸鋰基板上製備氮化鋁薄膜以應用於表面聲波元件”,國立中山大學電機工程研究所碩士論文,2016。
[23]. Q.X. Su, P. Kirby, E.Komuro, M.Imura, Q.Zhang, “Whatmore, R. Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanatethinfilms,” Microwave Theory and Techniques, IEEE Transactions on, pp. 769-778, 2001.
[24]. Kim, B.K., Lee, Y.H., Lee, S.H., Lee, J.K.& Kim, S.W.“A noble suspended type thin film resonator (STFR) using the SOI technology.”Sensors and Actuators A: Physical , vol.89, pp.255-258 ,2001.
[25]. Kirby, P. B., Potter, M. D. G., Williams, C. P. & Lim, M. Y. “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators.”Journal of the European Ceramic Society , vol.23 ,2003.
[26]. 顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會, 1993。
[27]. 黃肇瑞,“陶瓷技術手冊 (下 ) ”,pp.777,1995。
[28]. H. L. Hartnagel, A. K. Jain and C. Jagadish,“Semiconducting Transparent Thin Films,” published by Institute of Physics Publication, 1995.
[29]. P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[30]. Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[31]. T.Y. Ma and D.K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films.” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[32]. 施敏、張俊彥,“半導體元件之物理與技術”,儒林,1990。
[33]. R.W. Berry, P.M. Hall and M.T. Harris, “Thin film technology,” Van Nostrand Princeton, New Jersey, 1968.
[34]. J.L. Vossen and W. Kern, “Thin film processes II,”Academic Pr, 1991.
[35]. Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons, NewYork, 1980.
[36]. E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[37]. C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless communications,” Academic Press, New York, 1998.
[38]. Philip Coane, “Introduction to Electron Beam Lithography, ” Louisiana Tech University, Institute for Micromanufacturing, from the World Wide Web: http://140.120.11.121/~denda/Upload/paper/[11]Introduction to Electron Beam Lithography.pdf
[39]. (資料庫資料):蝕刻技術。取自:http://me.csu.edu.tw/swl/non/ch7/ch7.pdf
[40]. C. K. Campbell,“Surface Acoustic Wave Devices for Mobile and Wireless communications”,Academic Press, 1998.
[41]. 李其源,“蝕刻晶片厚度即時監控之新穎方法”,國立台灣大學機械工程研究所博士論文,2004。
[42]. 蕭价伶,“非接觸式光學檢測應用於 FPW 元件量測技術”,國立中央大學光電研究所碩士論文,2005。
[43]. 盧建彰,“應用微帶線結構於表面聲波濾波器之研究”,國立成功大學微電子所碩士論文,2003。
[44]. S.H. Tsai, I.T. Tang, M.P. Houng, Y.H.Wang, “A Design Rule of Surface soustic Wave Filter”, Journal of Marine Science and Engineering, vol.34, No.4, pp.231-238, 2002.
[45]. J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, “Microsensors, MEMS, and smart devices,” John Wiley & Sons, 2001.
[46]. C. Campbell and J.C. Burgess, “Surface acoustic wave devices and their signal processing applications” ,Soc, vol. 89, pp. 1479-1480, 1991.
[47]. R. Ro, S.Y. Chang, R.C. Hwang and D.H. Lee, “Identification of ionic solutions using a SAW liquid sensor.”, Part A: Physical Science and Engineering,vol 23, pp. 810-815, 1999.
[48]. 朱慕道, 表面聲波元件與應用, 新電子期刊, p183~186, 1994。
[49]. 廖珮淳, “以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件”國立中山大學電機工程學系碩士班學位論文, 年2013。
[50]. C. Campbell,“Surface acoustic wave devices for mobile and wireless communications,”Academic Press, pp. 108-113 ,INC, 1989.
[51]. R. Pallas-Areny and J.G. Webster, “Sensors & signal conditioning,” Recherche, vol. 67, pp. 02, 2000.
[52]. C. K. Campbell , “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, pp.410,1997.
[53]. H. Matthews, “Surface Wave Filters Design, Construction, and Use”, 1979.
[54]. A. J. Slobodnik, J. R. Thomas “SAW device”, Slobodnik, 1979
[55]. B.Y.JL.Huang and.D.F.Lii, “Effect of R.F.Bias and Nitrogen Flow Rate on the Reactive Sputtering of TiAlN Films”, Thin Solid films, vol.293, pp.212, 1997.
[56]. 鄭建銓,“質子交換鈮酸鋰與射頻濺鍍氮化鋁薄膜之表面聲波特性研究”,中山大學博士論文,1996。
[57]. 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學系博士班學位論文,2004。
[58]. Qi Jie Wang,Christian Pflügl, William F. Andress, Donhee Ham, and Federico Capasso School of Engineering and Applied Sciences, Harvard University, Cambridge, “Gigahertz surface acoustic wave generation on ZnO thin films depositedby radio frequency magnetron sputtering on III-V semiconductorsubstrates”, Applied Sciences,2008.
[59]. George Deligeorgis, Adrian Dinescu, Antonis Stavrinidis, Alina Cismaru, Mircea Dragoman, and Alexandra Stefanescu, “SAW Devices Manufactured on GaN/Si for Frequencies Beyond 5 GHz”, Alexandru Müller, Member, IEEE, Dan Neculoiu, Member,2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code