Responsive image
博碩士論文 etd-0730117-201312 詳細資訊
Title page for etd-0730117-201312
論文名稱
Title
以植生復育法整治受重金屬污染土壤
Remediation of heavy-metal contaminated soils using phytoremediation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-08-30
關鍵字
Keywords
綠色整治、生物有效性、重金屬、生物濃縮因子、植生復育
bioconcentration factor, bioavailability, heavy metals, phytoremediation, green remediation
統計
Statistics
本論文已被瀏覽 5696 次,被下載 0
The thesis/dissertation has been browsed 5696 times, has been downloaded 0 times.
中文摘要
本研究以植生復育工法進行現地污染土壤整治,選用培地茅、水柳、馬拉巴栗及桃花心木進行重金屬(鉛、鉻、銅、鋅、鎳)污染復育評估探討。本研究現地土壤重金屬調查鉻污染最高濃度達137,235 mg/kg;鉛最高濃度110,210 mg/kg;銅最高濃度92,300 mg/kg;鋅最高濃度77,293 mg/kg;鎳最高濃度31,673 mg/kg。依污染濃度區分為高低濃度區,高濃度共劃分三區塊(H-I、H-II及H-III),低濃度為一區塊(L),依四區土壤重金屬有效性試驗結果顯示,以鉛生物有效性最高,高污染區濃度介於52.9-737 mg/kg,低污染區濃度10.6 mg/kg;其次為銅,高污染區有效性濃度於25.4-192 mg/kg之間,低污染區濃度7.97 mg/kg;鋅在高污染區有效性濃度於12.7-157 mg/kg,低污染區濃度4.95 mg/kg;鎳在高污染區有效性濃度0.81-6.06 mg/kg,低污染區有效性濃度0.76 mg/kg;鉻在高污染區有效性濃度0.10-13.1 mg/kg,低污染區有效性濃度0.10 mg/kg。由種植結果顯示培地茅植體地下部對重金屬鉻累積較佳;水柳以地上部對鋅累積效果較佳;馬拉巴栗地下部對鉛、鉻及銅的累積效果較佳;桃花心木以地下部對鉛的累積效果較明顯。轉移係數計算結果以培地茅對鉛具有較佳的萃取效果,而對鉻、鎳及銅則發揮植生穩定的效果;馬拉巴栗及水柳對鋅及鉛具萃取效果,針對其他重金屬則具植生穩定的效果;桃花心木對鎳及鉛的累積能力相當,而對鉻、銅及鋅明顯發揮植生穩定的效果。生物濃縮因子計算結果,於H-I、H-II及L試驗區內各植物之鉻BCF值皆為最高。其他重金屬仍具穩定吸收的效果。依照研究結果估算污染面積800平方公尺的表土層土壤以植生復育工法栽種1年最高可移除的總量為鋅的0.19 kg,鉛可達0.16 kg,銅為0.14 kg,鉻及鎳分別為0.13 kg及0.14 kg,植生復育工法所需的復育時間雖較長,但仍具低成本且非破壞性之優勢。本研究之成果將能做為未來綠色整治參考之依據。
Abstract
In this study, the remediation of heavy metals (lead, chromium, copper, zinc and nickel) contaminated soils was carried out using phytoremediation. Phytocarpus, water willow, mara chinensis, and mahogany were selected as the plants for soil remediation. Results from the site investigation show that the maximum concentrations of chromium, lead, copper, zinc, and nickel were 137,235, 110,210, 92,300, 77,293, and 31,673 mg/kg. The high concentration area was divided into three groups((H-I、H-II及H-III). According to the test results of soil heavy metal bioavailability indicate that the phytocarpus had higher Cr accumulation in the lower part of the plant, and water willow had better Zn accumulation in the upper part of the plant. Mara chinensis had higher Cr, Pb, and Cu accumulation in the lower part of the plant, and mahogany also had better Pb accumulation in the lower part of the plant. Based on the bioconcentration factor results, phytocarpus had better Pb extraction efficiency, and it had stabilization effects on Cr, Ni, and Cu. Mara chinensis and water willow had higher extraction efficiency for Pb and Zn, and it had stabilization effects on other metals. Mahogany had hgiehr accumulation effects on Ni and Pb, and it had stabilization effects on Cr, Cu, and Zn. Results from this study will be useful in designing a phytoremediation system for the remediation of heavy-metal contaminated soils. The results of this study will be the basis for green remediation.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 1
第二章 文獻回顧 2
2.1土壤重金屬污染之來源與現況 2
2.2土壤重金屬污染特性及危害 7
2.3影響土壤重金屬移動之因素 11
2.3.1土壤之酸鹼值 12
2.3.2土壤有機質 14
2.3.3土壤質地 15
2.3.4陽離子交換容量 16
2.3.5氧化還原電位 16
2.3.6其他因子 17
2.4 土壤及地下水重金屬整治之技術 17
2.5 土壤植生復育技術 19
2.5.1植生復育之機制 20
2.5.2植物吸收累積重金屬之機制 23
2.5.3植體累積重金屬能力評估 25
2.5.4植生復育技術之優缺點 25
2.6植物吸附重金屬之生物有效性 29
2.7不同植物對重金屬之累積性 31
第三章 材料與方法 35
3.1 研究場址概述 36
3.2調查及採樣方法 37
3.3 土壤基本性質分析 39
3.4 土壤重金屬分析 43
3.5生物有效性分析 44
3.6 植體重金屬分析 44
第四章 結果與討論 45
4.1土壤基本性質 45
4.2土壤重金屬分布 47
4.3土壤生物有效性 61
4.4植生復育試驗 62
4.4.1生育調查及生理試驗 62
4.4.2植體累積重金屬濃度分析 66
4.4.3不同植體累積重金屬試驗轉移係數(TF) 84
4.4.4不同植體累積重金屬試驗生物濃縮因子(BCF) 86
4.4.5植體對重金屬的移除量 93
第五章 結論與建議 97
5.1結論 97
5.2建議 98
參考文獻 99
參考文獻 References
Adriano, D.C., Wenzel, W.W., Vangronsveld, J. and Bolan, N.S. (2004). “Role of assisted natural remediation in environmental cleanup”, Geoderma, 122, 121-142.
Agamuthu, P., Abioye, O.P., Aziz, A.A. (2010). “Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas”, Journal of Hazardous Materials, 179, 891-894.
Al-Baldawi, I. A. W., Abdullah, S. R. S., Suja, F., Anuar, N., Mushrifah, I. (2013). “Comparative performance of free surface and sub-surface flow systems in the phytoremediation of hydrocarbons using Scirpus grossus. Journal of Environmental Management, 130, 324-330.
Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., and Rinklebe, J. (2017). “Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation - A review”, Earth-Science Reviews.
Azouzi, R., Charef, A., and Hamzaoui, A. H. (2015). “Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil”, Environmental Earth Sciences, 74(4), 2967.
Bhargava, A., Carmona, F. F., Bhargava, M., and Srivastava, S. (2012). “Approaches for enhanced phytoextraction of heavy metals”, Journal of Environmental Management, 105, 103-120.
Caçador, I., and Duarte, B. (2015). “Chromium phyto-transformation in salt marshes: the role of halophytes”, Phytoremediation: Management of Environmental Contaminants, 2, 211-217.
Cafer, T., M. K. Pepe, T. J. Cutright, (2004). “The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus”, Environ. Pollut, 131, 147-154.
Capuana, M. (2011). “Heavy metals and woody plants-biotechnologies for phytoremediation”, iForest-Biogeosciences and Forestry, 4(1), 7.
Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., and Sparks, D. L. (2007). “Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies”, Journal of Environmental Quality, 36(5), 1429-1443.
Chappell, J. (1997) “Phytoremediation of TCE using Populus”, Status Report prepared for the U.S. EPA Technology Innovation.
Cluis, C., (2004) “Junk-greedy greens: phytoremediation as a new option for soil decontamination”, BioTeach Journal, 2, 60-67.
de Livera, J., McLaughlin, M. J., Hettiarachchi, G. M., Kirby, J. K., & Beak, D. G. (2011). “Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions”, Science of the Total Environment, 409(8), 1489-1497.
Dickinson, M. N., and Pulford, I. D. (2005). “Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail”, Environ. Intern, 31, 609-613.
Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., and Paul, D. (2015). “Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes”, Sustainability, 7(2), 2189-2212.
E. Pilon-Smits, (2005) Phytoremediation, Annual Review of Plant Biology, 56, 15-39.
Ettler, V. (2016). “Soil contamination near non-ferrous metal smelters: A review”, Applied Geochemistry, 64, 56-74.
Favas, P. J., Pratas, J., Varun, M., D’Souza, R., and Paul, M. S. (2014). “Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora”, In Environmental risk assessment of soil contamination, InTech.
Fayiga, A. Q., and Ma, L. Q., (2006) “Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pteris vittata,” Science of the Total Environment, 359, 17-25.
Figueroa, J.A.L., K. Wrobel, S. Afton, J.A. Caruso, J.F.G. Corona, amd Wrobel. K. (2008). “Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico”, Chemosphere, 70, 2084-2091.
Forte, J., and Mutiti, S. (2017). “Phytoremediation Potential of Helianthus annuus and Hydrangea paniculata in Copper and Lead-Contaminated Soil”, Water, Air, & Soil Pollution, 2(228), 1-11.
Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant science, 176(1), 20-30.
Hansson, K., Olsson, B. A., Olsson, M., Johansson, U., and Kleja, D. B. (2011). “Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden”, Forest Ecology and Management, 262(3), 522-530.
Hawrylak-Nowak, B., Dresler, S., and Matraszek, R. (2015). “Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants”, Plant Physiology and Biochemistry, 94, 225-234.
He, L. P., Liu, D., Lin, J. J., Yu, Z. G., Yang, X. X., Fu, C., and Zhao, Q. H. (2017). “Total nitrogen and pH-controlled chemical speciation, bioavailability and ecological risk from Cd, Cr, Cu, Pb and Zn in the water level-fluctuating zone sediments of the Three Gorges Reservoir”, Chemical Speciation & Bioavailability, 29(1), 89-96.
Hechmi, N., Aissa, N. B., Abdennaceur, H., and Jedidi, N. (2013). “Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium”, International journal of phytoremediation, 15(7), 703-713.
Kidd, P., Barceló, J., Bernal, M. P., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., and Monterroso, C. (2009). “Trace element behaviour at the root–soil interface: implications in phytoremediation. Environmental and Experimental Botany, 67(1), 243-259.
Komarek, M., Tlustos, P., J. Szakova, V., Chrastny, V., and Ettler, V. (2007). “The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils”, Chemosphere, 67(4), 640-651.
Kwapuliński, J., Paukszto, A., Paprotny, Ł., Musielińska, R., Kowol, J., Nogaj, E., and Rochel, R. (2012). “Bioavailability of Lead, Cadmium, and Nickel in Tatra Mountain National Park Soil”, Polish Journal of Environmental Studies, 21(2).
Lai, H. Y., and Chen, Z. S. (2008). “Proceedings of International Symposium of Soil Heavy Metal Pollution and Remediation”, National Pingtung University of Science and Technology, Pingtung, 57-64.
Li, Z., Q. Wang, Y. Cui, Y. Dong, and Christie, P. (2005). “Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study”, Sci. Total Environ, 339, 179-187.
Lindsay, W.L., and W.A. Norvell. (1978). “Development of a DTPA soil test for zinc, iron, manganese, and copper”, Soil Sci. Soc. Am. J. 42:421-428.
Lone, M. I., He, Z. L., Stoffella, P. J., and Yang, X. E. (2008). “Phytoremediation of heavy metal polluted soils and water: progresses and perspectives”, Journal of Zhejiang University Science B, 9(3), 210-220.
Marchiol, L., Assolari, S., Sacco, P., and Zerbi, G., (2004) “Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil,” Environmental Pollution, 132, 21-27.
McCutcheon, S. C., and Schnoor, J. L. (2004). “Phytoremediation: transformation and control of contaminants”, John Wiley & Sons, 121.
Mellem, J. J., Baijnath, H. and Odhav, B. (2012). “Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius”, African Journal of Agricultural Research, 7(4), 591-596.
Mertens, J., Vervaeke, P., Meers, E., and Tack, F. M. (2006). “Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment”, Environmental science and technology, 40(6), 1962-1968.
Mitter, B., Brader, G., Afzal, M., Compant, S., Naveed, M., Trognitz, F., and Sessitsch, A. (2013). “Advances in elucidating beneficial interactions between plants, soil and bacteria”, Adv Agron, 121, 381-445.
Mukhopadhyay, S., and Maiti, S. K. (2010). “Phytoremediation of metal mine waste”, Applied ecology and environmental research, 8(3), 207-222.
Muratova, A.Y., Golubev, S.N., Dubrovskaya, E.V., Pozdnyakova, N.N., Panchenko, P.E.V., Chernyshova, M.P., Turkovskaya, O.V. (2012). “Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem”, Applied Soil Ecology, 56, 51-57.
Noll, M. R. (2003). “Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals”, Journal of Environmental Quality, 32(1), 374.
Padmavathiamma, P. K., and Li, L. Y. (2007). “Phytoremediation technology: hyper-accumulation metals in plants”, Water, Air, and Soil Pollution, 184(1), 105-126.
Parmar, S., and Singh, V. (2015). “Phytoremediation approaches for heavy metal pollution: a review”, J Plant Sci Res, 2(2), 135.
Peng, S., Zhou, Q., Cai, Z., Zhang, Z. (2009). “Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment”, Journal of Hazardous Materials, 168, 1490-1496.
Rahman, M. A., Reichman, S. M., De Filippis, L., Sany, S. B. T., and Hasegawa, H. (2016). “Phytoremediation of toxic metals in soils and wetlands: concepts and applications”, In Environmental Remediation Technologies for Metal-Contaminated Soils, 161-195.
Rezvani, M., and Zaefarian, F., (2011). “Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis”, Australian Journal of Agricultural Engineering, 2, 114-119.
Rieuwerts, J. S., Ashnore, M. R., and Farago, M. E., Thornton, I., (2006). “The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils,” Science of The Total Environment, 366, 864-875.
Rodríguez-Vila, A., Asensio, V., Forján, R., and Covelo, E. F. (2016). “Assessing the influence of technosol and biochar amendments combined with Brassica juncea L. on the fractionation of Cu, Ni, Pb and Zn in a polluted mine soil”, Journal of soils and sediments, 16(2), 339.
Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W. W., Fallmann, K., and Puschenreiter, M. (2013). “The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils”, Soil Biology and Biochemistry, 60, 182-194.
Sharma, H. (2016) “Phytoremediation of Lead Using Brassica Juncea and Vetiveria Zizanioides”, International Journal of Life Sciences Research, 4(1), 91-96.
Siebielec, G., Ukalska-Jaruga, A., and Kidd, P. (2015). “Bioavailability of trace elements in soils amended with high-phosphate materials. Phosphate in Soils: Interaction with Micronutrients”, Radionuclides Heavy Metals, 2, 237-260.
Singhl, R., D.P. Singh, N. Kumar, S. K. Bhargava1 and Barman, S. C. (2010). “Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area”, Journal of Environmental Biology, 31, 421-430.
Tian, S. N., Liu, D. Y. ,and Peng, S. L. (2004). “The study on tolerance of Vetiveria izanioides and Roegneria kamoji to heavy metal Cu, Pb, Zn and their mixed soluble”, Journal of Biology, 21, 15-19.
Truu, J., Truu, M., Espenberg, M., Nõlvak, H., and Juhanson, J. (2015). “Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review”, Open Biotechnol J, 9, 85-92.
U.S.EPA, (2000). “Introduction to Phytoremediation.” EPA/600/R-99/107.Washing-ton DC, February.
U.S.EPA, (2007). “Treatment Technologies for Site Cleanup : Annual Status Report(Twelfth Edition).” EPA/542-R-07-012.
Vamerali, T., Bandiera, M., and Mosca, G. (2010). “Field crops for phytoremediation of metal-contaminated land. A review”, Environmental Chemistry Letters, 8(1), 1-17.
Vangronsveld, J., and Cunninggham, S.D. (1998). “Introduction to the concepts. In: Vangronsveld, J., and S.D. Cunninggham (Eds.), Metal contaminated soils: In-situ Inactivation and phytorestoration”, Springer Verlag, Berlin, 219-225.
Vwioko, D. E., G. O. Anoliefo, and Fashemi, S. D. (2006). “Metal contamination in plant tissues of Ricinus communis L. (Castor Oil) grown in Soil contaminated with spent lubricating oil”, J. Appl. Sci. Environ. Manage, 10(3), 127-134.
Wang, J., Liu, X., Zhang, X., Liang, X., Zhang, W. (2011). Growth response and phytoremediation ability of Reed for diesel contaminant. Procedia Environmental Sciences, 8, 68-74.
Wuana, R. A., and Okieimen, F. E. (2011). “Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation”, Isrn Ecology, 20.
Wuana, R. A., and Okieimen, F. E. (2011). “Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation”, Isrn Ecology, 20.
Wuana, R. A., Okieimen, F. E., and Vesuwe, R. N. (2014). “Mixed contaminant interactions in soil: Implications for bioavailability, risk assessment and remediation”, African Journal of Environmental Science and Technology, 8(12), 691-706.
Yerokun, O. A., and Chirwa, M. (2014). “Soil and foliar application of Zinc to maize and wheat grown on a Zambian Alfisol”, African Journal of Agricultural Research, 9(11), 963-970.
Zacchini, M., F. Pietrini, G. S. Mugnozza, V. Iori, L. Pietrosanti, and Massacci, A., (2009). “Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics”, Water, Air, Soil Poll, 197, 23-34.
Złoch, M., Kowalkowski, T., Tyburski, J., and Hrynkiewicz, K. (2017). “Modelling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals”, International Journal of Phytoremediation, (just-accepted).
甘傳鵬,(2007),「以不同消化方法比較不同土壤中重金屬含量」,碩士學位論文,朝陽科技大學環境工程與管理研究所。
朱祐陞,(2014),「堆肥添加對植物復育整治柴油污染土壤效果之研究」,碩士學位論文,國立中山大學海洋環境及工程學系。
朱訓智,(2002),「鋅、鉻在分層土壤中傳輸與吸持機制之探討」,碩士學位論文,國立屏東科技大學環境工程與科學系。
江東法、何國華、林怡青、袁菁、張家銘、陳呈芳、劉敏信、魏顯祥,(2006),「重金屬土壤及地下水污染預防與整治技術手冊」,經濟部工業局。
李明芳,(2009),「不同施肥推薦下玉米幼苗在蛇紋石土壤中之重金屬吸收量」,碩士學位論文,國立屏東科技大學環境工程與科學所。
林怡雅,(2005),「探討生物聚醣三仙膠在生物吸附程序之應用」,碩士學位論文,中原大學化學工程研究所。
孫世緯,(2015),「以植生復育技術處理受重金屬鋅、鉛、銅與鉻污染之土壤」,碩士學位論文,國立屏東科技大學環境工程與科學系所。
徐仲禹,(2009),「土壤中鐵錳結核對鉻的氧化還原反應之影響」,臺灣大學農業化學研究所學位論文。
袁菁,(2006),「重金屬污染土壤整治技術介紹」,國立高雄大學土木與環境工程學系。
高品,(2007),「重金屬污染-鉛、汞、銅、鎘污染來源」,科技新知。
高嫚聰,(2014),「酸鹼值控制下沉積物中萃取重金屬的初步探究」,碩士學位論文,國立中正大學地球與環境科學係應用地球物理與環境科學碩士班。
許正一,(2009),「珍貴的土壤資源」,科學發展,第434期,第56-61頁。
陳彥宇,(2015),「施用磷肥之概念-磷在土壤中的特性」,台肥季刊,第五十五卷,第4期。
陳尊賢,(2005),「污染土壤重金屬管制濃度之修正與評估」,研討會論文集,台灣土壤及地下水污染整治之回顧與展望研討會,第79-95頁。
陳慎德,(2004),「重金屬污染整治技術與案例分析」,研習手冊,土壤及地下水應用技術講習會。
陳鴻基,(2015),「地球之皮膚、萬物之母-土壤」,科學研習,第54期,8-13。
黃富昌、陳慶和、邱英嘉、劉偉麟、蕭博瑞、劉家福、盧麒丞、顏冠忠、林嘉鴻、詹晏權、龔豊智,(2006),「土壤污染物化合型態分佈之影響因子及其傳輸機制之研究」,台灣環境資源永續發展研討會論文集。
溫源淼,(2006),「以植物修復技術處理遭受重金屬鎘污染土壤之研究」,碩士學位論文,國立中山大學海洋環境及工程學系。
經濟部工業局,土壤與地下水污染整治手冊-生物處理技術(2004)。
劉仁煜、程淑芬,(2004),「污染場址中不同粒徑土壤對重金屬吸附特性之研究」,台灣環境資源永續發展研討會論文集。
蔡嘉仁,(2013),「電動力技術整治電鍍工廠污染土壤之三維模場研究」,碩士學位論文,國立高雄大學土木與環境工程學系。
鄭長和,(2004),「污泥土地施用指標污染物的篩選與風險評估」,碩士學位論文,國立屏東科技大學環境工程與科學研究所。
簡志青、洪鈞煒,(2005),「重金屬鎘污染環境微生物相與菌株之分離與探討」,第三屆土壤及地下水研討會論文集。
赵云杰、马智杰、张晓霞、薛筱禅、历梦颖、程雨薇、查同刚,(2015),「土壤-植物系统中重金属迁移性的影响因素及其生物有效性评价方法」,中国水利水电科学研究院学报,地13卷,第3期。
土壤及地下水污染整治網,http://sgw.epa.gov.tw/。
交通部中央氣象局,http://www.cwb.gov.tw/V7/index.htm。
郭魁士,1997,土壤學,中國書局,台北。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.70.203
論文開放下載的時間是 校外不公開

Your IP address is 3.14.70.203
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code