Responsive image
博碩士論文 etd-0730118-122906 詳細資訊
Title page for etd-0730118-122906
論文名稱
Title
藉由掃描式穿隧電子顯微術與穿隧電子能譜研究低層數硒化銦的電子結構
The Electronic Structures of Few-Layered InSe Studied by Scanning Tunneling Microscopy/Spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-22
繳交日期
Date of Submission
2018-08-30
關鍵字
Keywords
凡德瓦材料、分子操控、石墨、硒化銦、掃描式穿隧電子顯微鏡、線性運算電路、STM 寄生電容
Operational amplifier, Scanning tunneling microscope, Molecular manipulate, Van der walls materials, Graphite, STM parasitic capacitance, InSe
統計
Statistics
本論文已被瀏覽 5664 次,被下載 2
The thesis/dissertation has been browsed 5664 times, has been downloaded 2 times.
中文摘要
為了解決硒化銦(InSe) 在低層數下能帶由直接能隙變為非直接能隙,使得硒
化銦難以透過常用的光學方法來測量的問題。本實驗中,我們使用掃描式穿隧電子
顯微鏡(Scanning tunneling microscope,STM) 與掃描式穿隧電子能譜(Scanning
tunneling spectroscopy,STS) 來研究透過膠帶剝離法轉移到石墨上的硒化銦薄
片。
從STM 的影像中,確定了附著在石墨上的硒化銦薄片厚度至少有15 奈米以
下,晶格常數為 3.84 A° 、單層厚度約 8.01 A° 。同時透過外掛的線性運算電路去
除STM 電路中的寄生電容造成的訊號干擾。在不更改STM 系統結構的前提下,
使得STS 的測量依然可以正常運作。得到硒化銦清楚的n 型半導體態密度結構
與1.15 eV 的能隙大小。並測量了4 ~ 10層硒化銦的電子結構。然而測量的結果與
理論的預測有極大的不同,推測是由於硒化銦邊界結構與石墨的交互作用造成。此
外STM 施加在探針與樣品之間的電場能對硒化銦的厚度與形狀進行一定程度的改
變,透過STM 將能更精確的得到低層數硒化銦隨厚度變化的性質。
Abstract
Direct-to-indirect band gap transition of few-layers InSe is a problem for
optical measurements like Raman spectroscopy and photoluminescence spectroscopy
(PL). To identify the properties of few layers InSe, we use scanning
tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) to probe
the electronic properties of exfoliated InSe flake on graphite.
We identify the thickness of InSe flakes can be lower than 15 nm. The structure
of atomic accuracy is 3.841 A° and 8.01 A° correspond to the lattice constant
and the thickness of single layer. However, the parasitic capacitance in STM system
is a big problem for STS. We design a a external operational circuit to eliminate
the signal of parasitic capacitance. By using STS, we measure the electronic
structure from 4-10 ML InSe which conventional spectroscopy cannot reach. The
results are very different from the theoretical calculation. It could due to the
structure of InSe edge and the interation between InSe and HOPG. In the other
hand, We can change the morphology of InSe edge by STM tip. It make us to get
a new mether to prepare thinner InSe.
目次 Table of Contents
論文審定書i
論文公開授權書iii
誌謝v
中文摘要vi
英文摘要vii
1. 簡介1
1.1. 二維凡德瓦材料(2D van der Waals materials) . . . . . . . . . . . . . 1
1.2. 硒化銦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. 實驗設備與實驗方法7
2.1. 掃描式穿隧電子顯微鏡(STM) . . . . . . . . . . . . . . . . . . . . . . 7
2.2. 超高真空系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3. 低層數硒化銦製備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3. 實驗結果及討論25
3.1. 硒化銦的表面結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. 硒化銦的電子結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. 硒化銦邊界的微剝離現象. . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. 隨厚度變化的低層數硒化銦電子結構. . . . . . . . . . . . . . . . . . . 45
3.5. STM寄生電容訊號處理. . . . . . . . . . . . . . . . . . . . . . . . . . 48
4. 總結55
參考文獻57
A. 不同掃描參數的硒化銦邊界變化61
B. 消除電路規格67
參考文獻 References
[1] Kibirev, I., Matetskiy, A., Zotov, A. & Saranin, A. Thickness-dependent
transition of the valence band shape from parabolic to mexican-hat-like in
the mbe grown inse ultrathin films. Applied Physics Letters 112, 191602 (2018).
[2] Sun, Y. Inse: a two-dimensional material with strong interlayer coupling.
Nanoscale 10, 7991–7998 (2018).
[3] da Costa, P. G. First-principles study of the electronic structure of y-inse and
p-inse. PHYSICAL REVIEW B 48, 14135 (1993).
[4] L¨ uth, H. Solid surfaces, interfaces and thin films, vol. 4 (Springer, 2001), sixth
edn.
[5] Hansma, P. K. & Tersoff, J. Scanning tunneling microscopy. Journal of Applied
Physics 61, R1–R24 (1987).
[6] Novoselov, K. S., Geim, A. K., Morozov, S. V. et al. Electric field effect in
atomically thin carbon films. science 306, 666–669 (2004).
[7] Novoselov, K. S. et al. Two-dimensional gas of massless dirac fermions in
graphene. nature 438, 197 (2005).
[8] Novoselov, K., Mishchenko, A., Carvalho, A. & Neto, A. C. 2d materials and
van der waals heterostructures. Science 353, aac9439 (2016).
[9] Luo, W. et al. Gate tuning of high-performance inse-based photodetectors
using graphene electrodes. Advanced Optical Materials 3, 1418–1423 (2015).
[10] Feng, W., Zheng, W., Cao, W. & Hu, P. Back gated multilayer inse transistors
with enhanced carrier mobilities via the suppression of carrier scattering
from a dielectric interface. Advanced Materials 26, 6587–6593 (2014).
[11] Jacoboni, C., Canali, C., Ottaviani, G. & Quaranta, A. A. A review of some
charge transport properties of silicon. Solid-State Electronics 20, 77–89 (1977).
[12] De Blasi, C., Micocci, G., Mongelli, S. & Tepore, A. Large inse single crystals
grown from stoichiometric and non-stoichiometric melts. Journal of Crystal
Growth 57, 482–486 (1982).
[13] Lei, S. et al. Evolution of the electronic band structure and efficient photodetection
in atomic layers of inse. ACS nano 8, 1263–1272 (2014).
[14] Chevy, A., Kuhn, A. & Martin, M.-S. Large inse monocrystals grown from a
non-stoichiometric melt. Journal of Crystal Growth 38, 118–122 (1977).
[15] Bandurin, D. A. et al. High electron mobility, quantum hall effect and
anomalous optical response in atomically thin inse. Nature nanotechnology
12, 223 (2017).
[16] Razavy, M. Quantum theory of tunneling (World Scientific, 2003).
[17] Laplante, P. A. Comprehensive Dictionary of Electrical Engineering (Boca Raton,
2005), second edn.
[18] Balitskii, O., Lutsiv, R., Savchyn, V. & Stakhira, J. Thermal oxidation of cleft
surface of inse single crystal. Materials Science and Engineering: B 56, 5–10
(1998).
[19] Lang, O. et al. Thin film growth and band lineup of in 2 o 3 on the layered
semiconductor inse. Journal of applied physics 86, 5687–5691 (1999).
[20] Bakhtinov, A. P. Formation of nanostructure on the surface of layered inse
semiconductor caused by oxidation under heating. Physics of the Solid State
49, 1572–1578 (2007).
[21] Katerynchuk, V. M. Surface morphology and electrical resistance of the
oxide film on inse. Inorganic Materials 47, 749–752 (2011).
[22] Balitskii, O., Savchyn, V. & Yukhymchuk, V. Raman investigation of inse
and gase single-crystals oxidation. Semiconductor science and technology 17,
L1 (2002).
[23] Miyake, I., Tanpo, T. & Tatsuyama, C. Xps study on the oxidation of inse.
Japanese Journal of Applied Physics 23, 172 (1984).
[24] Ni, Z. H., Wang, H. M., Kasim, J. et al. Graphene thickness determination
using reflection and contrast spectroscopy. NANO LETTERS 7, 2758–2763
(2007).
[25] Brotons-Gisbert, M., S´anchez-Royo, J. & Mart´ınez-Pastor, J. Thickness identification
of atomically thin inse nanoflakes on sio2/si substrates by optical
contrast analysis. Applied Surface Science 354, 453–458 (2015).
[26] Deckoff-Jones, S., Zhang, J., Petoukhoff, C. E. et al. Observing the interplay
between surface and bulk optical nonlinearities in thin van der waals
crystals. Scientific Reports 6 (2016).
[27] Park, J. H., Sanne, A., Guo, Y. et al. Defect passivation of transition metal
dichalcogenides via a charge transfer van der waals interface. Science Advances
3, e1701661 (2017).
[28] Kaiser, W., Bell, L., Hecht, M. & Grunthaner, F. Scanning tunneling
microscopy characterization of the geometric and electronic structure of
hydrogen-terminated silicon surfaces. Journal of Vacuum Science & Technology
A: Vacuum, Surfaces, and Films 6, 519–523 (1988).
[29] Tadmor, R. The london-van der waals interaction energy between objects of
various geometries. Journal of physics: Condensed matter 13, L195 (2001).
[30] Parsegian, V. A. Van der Waals forces: a handbook for biologists, chemists, engineers,
and physicists (Cambridge University Press, 2005).
[31] Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct imaging
of band profile in single layer mos2 on graphite: quasiparticle energy gap,
metallic edge states, and edge band bending. Nano letters 14, 2443–2447
(2014).
[32] Le Quang, T. et al. Scanning tunneling spectroscopy of van der waals
graphene/semiconductor interfaces: absence of fermi level pinning. 2D Materials
4, 035019 (2017).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code