Responsive image
博碩士論文 etd-0730118-123125 詳細資訊
Title page for etd-0730118-123125
論文名稱
Title
一步合成銅錫硫化物作為光電化學產氫之光陰極
One-step Synthesis of Copper Tin Sulfide Photocathodes for Photoelectrochemical Hydrogen Generation.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-30
關鍵字
Keywords
氟摻雜二氧化錫導電玻璃、光陰極、光電化學產氫、溶熱法、銅錫硫化物
FTO, photocathode, CTS, solvothermal method
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
銅錫硫化物有合適的能隙 (0.9 - 1.6 eV)、大的光吸收係數 (超過104 cm-1),同時其導帶位於比熱力學上水分解產氫所需的電位 (可逆氫電極0 V) 更負的位置,這些性質使其成為一種非常具有潛力的光電化學產氫光陰極材料。
在本研究中,利用氯化銅二水合物、氯化錫五水合物與硫脲作為元素來源,並以三甘醇為溶劑,在150℃下透過溶熱法直接於氟摻雜二氧化錫 (fluorine -doped tin oxide,FTO) 導電玻璃基板上生成銅錫硫化物,事後不需再進行退火。從掃描式電子顯微鏡可知銅錫硫化物以顆粒狀的形式分布在基板表面,顆粒尺寸約為800至1000奈米。穿透式電子顯微鏡的分析結果可知材料球狀顆粒是由5到10奈米的晶粒所組合而成,透過 X射線光電子能譜量測結果得知材料主要元素組成為Cu+、Sn4+及S2-,再搭配X光繞射、拉曼光譜、能量色散X-射線光譜分析知材料內部可能同時存在有Cu2SnS3和Cu4SnS4兩種不同化學組成的銅錫硫化物。通過紫外-可見光光譜儀量測可知能隙為1.38 eV,結合紫外光光電子能譜繪製出能帶結構。
在電化學表現方面,CTS電光電流起始電位為0.15 V (以可逆氫電極作為標準),在理論產氫電位光電流大小為 0.105 mA/cm2。經過在表面修飾二氧化鈦與鎳作為保護層及觸媒後,並沒有改變光電流的起始電位,但光電流提升為0.354 mA/cm2,是修飾前的3倍以上。
Abstract
Copper tin sulfide (CTS) is one of promising photocathode materials for photoelectrochemical (PEC) water splitting, because it has a suitable band structure and large absorption coefficient (over 104 cm-1). In this work, CTS was grown onto fluorine doped tin oxide (FTO) glass by a solvothermal method without annealing. According to scanning electron microscope (SEM) and transmission electron microscope (TEM), CTS particle size is around 800 to 1000 nm and consist of nanocrystal and amorphous phase. X-ray photoelectron spectroscopy (XPS) show the elemental valences are Cu+、Sn4+ and S2-. Combined with X-ray diffraction (XRD)、Raman spectroscopy and energy dispersive spectroscopy (EDS) both Cu2SnS3 and Cu4SnS4 exist in material. The band gap is 1.38 eV measured by UV-Vis spectrometer, and band structure was defined by ultraviolet photoelectron spectroscopy (UPS) .
The onset potential of CTS is 0.15 V ( vs reversible hydrogen electrode, VRHE) and the photocurrent is 0.105 mA/cm2 at the theoretical hydrogen production potential (0 VRHE). After using Titanium dioxide and nickel as buffer layer and catalyst, onset potential is still at 0.2 VRHE and the photocurrent increase to 0.354 mA/cm2, which is three times higher than bare CTS.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章、緒論 1
1-1 前言 1
1-2 研究目的 2
第二章、文獻回顧 3
2-1 太陽能水分解產氫 3
2-1-1 光電化學水分解 3
2-1-2 太陽能電池電解水系統 6
2-2 半導體電極特性 7
2-2-1 能隙 7
2-2-2 能帶彎曲 8
2-2-3 光電轉換效率 9
2-2-3-1 太陽光產氫轉換效率 10
2-2-3-2 入射光子-電子轉換效率 11
2-2-3-3 吸收光子-電子轉換效率 12
2-3 銅錫硫化物材料性質 13
2-4 銅錫硫化物之製備 14
2-4-1 水/溶熱法 14
2-4-2 濺鍍 16
第三章、實驗方法 17
3-1 實驗流程圖 17
3-2 藥品及儀器設備 17
3-2-1 藥品 17
3-2-2 實驗設備 18
3-2-3 分析儀器 18
3-2-3-1 掃描式電子顯微鏡 18
3-2-3-2 能量色散X射線光譜儀 19
3-2-3-3 X射線繞射分析儀 20
3-2-3-4 電化學分析儀 21
3-2-3-5 紫外-可見分光光譜儀 23
3-2-3-6 穿透式電子顯微鏡 24
3-2-3-7 拉曼光譜儀 25
3-2-3-8 X射線光電子能譜儀 26
3-2-3-9 紫外光光電子能譜儀 26
3-3 實驗步驟 26
3-3-1 具奈米結構銅錫硫化物製備 26
3-3-2 二氧化鈦保護層及產氫觸媒修飾 27
3-3-3 光電化學分析 28
第四章、結果與討論 29
4-1 銅錫硫化物電極 29
4-2 電極修飾 44
第五章、結論 48
第六章、未來工作 49
第七章、參考資料 50
第八章、附錄 56
8-1 Cu3SnS4 晶格結構、XRD特徵峰與拉曼特徵峰 56
8-2 銅鋅錫硫化物製備 57
8-2-1 溫度的影響 57
8-2-2 前驅液濃度的影響 60
8-2-3 反應時間的影響 62
8-3 不同電解液中CTS電極光電化學表現 68
8-4 CV及不同電位區間LSVCTS電化學表現 69
8-5 穩定性重複開關光測試 71
8-6 FTO光電流研究 72
8-7 150℃反應4小時試片TEM影像 73
8-8 150℃反應4小時試片未經過氬氣電漿清潔之XPS分析 74
8-9 CTS Mott–Schottky分析 75
8-10 硫化鎘緩衝層製備 76
8-11 Ni/TiO2/CTS電極製備 77
8-12 電鍍鎳於TiO2/CTS電極 81
8-13 以TALH生長TiO2保護層 82
8-7 參考資料 83
參考文獻 References
1. Lewis, N. S.; Nocera, D. G., Powering the planet: chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (43), 15729-35.
2. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43 (22), 7520-7535.
3. Schlapbach, L.; Zuttel, A., Hydrogen-storage materials for mobile applications. Nature 2001, 414 (6861), 353-358.
4. Tiwari, D.; Koehler, T.; Klenk, R.; Fermin, D. J., Solution processed single-phase Cu2SnS3 films: structure and photovoltaic performance. Sustainable Energy & Fuels 2017, 1 (4), 899-906.
5. He, M.; Lokhande, A. C.; Kim, I. Y.; Ghorpade, U. V.; Suryawanshi, M. P.; Kim, J. H., Fabrication of sputtered deposited Cu2SnS3 (CTS) thin film solar cell with power conversion efficiency of 2.39 %. Journal of Alloys and Compounds 2017, 701, 901-908.
6. Sunny, G.; Thomas, T.; Deepu, D. R.; Kartha, C. S.; Vijayakumar, K. P., Thin film solar cell using earth abundant Cu2SnS3(CTS) fabricated through spray pyrolysis: Influence of precursors. Optik 2017, 144, 263-270.
7. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K., Materials for solar fuels and chemicals. Nature Materials 2016, 16 (1), 70-81.
8. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 2010, 110 (11), 6503-6570.
9. A. Fujishima; Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
10. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11 (3), 401-425.
11. Biernat, K.; Malinowski, A.; Gnat, M., The possibility of future biofuels production using waste carbon dioxide and solar energy. 2013.
12. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2010, 11 (4), 179-209.
13. Osterloh, F. E., Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews 2013, 42 (6), 2294-2320.
14. Suresh, B. V., Solid State Devices and Technology. Pearson Education: 2010.
15. Rangarajan, G., Materials Science. Tata McGraw-Hill: 2004.
16. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chemical Reviews 2010, 110 (11), 6446-6473.
17. 馮建勇. (氧)氮化物的製備及其光電化學水分解性能的研究. 南京大學, 2014.
18. Basile, A.; Iulianelli, A., Advances in Hydrogen Production, Storage and Distribution. Elsevier Science: 2014.
19. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research 2011, 25 (01), 3-16.
20. Pettersson, L. A. A.; Roman, L. S.; Inganäs, O., Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices. Journal of Applied Physics 2001, 89 (10), 5564-5569.
21. Choi, S. K.; Choi, W.; Park, H., Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Physical Chemistry Chemical Physics 2013, 15 (17), 6499-6507.
22. Lokhande, A. C.; Gurav, K. V.; Jo, E.; Lokhande, C. D.; Kim, J. H., Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review. Journal of Alloys and Compounds 2016, 656, 295-310.
23. Avellaneda, D.; Nair, M. T. S.; Nair, P. K., Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application. Journal of the Electrochemical Society 2010, 157 (6), D346-D352.
24. Berg, D. M.; Djemour, R.; Gütay, L.; Zoppi, G.; Siebentritt, S.; Dale, P. J., Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 2012, 520 (19), 6291-6294.
25. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A., Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517 (7), 2455-2460.
26. Baranowski, L. L.; Zawadzki, P.; Lany, S.; Toberer, E. S.; Zakutayev, A., A review of defects and disorder in multinary tetrahedrally bonded semiconductors. Semiconductor Science and Technology 2016, 31 (12).
27. Su, Z.; Sun, K.; Han, Z.; Liu, F.; Lai, Y.; Li, J.; Liu, Y., Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method. Journal of Materials Chemistry 2012, 22 (32).
28. Tao, H.-C.; Zhu, S.-C.; Yang, X.-L.; Zhang, L.-L.; Ni, S.-B., Reduced graphene oxide decorated ternary Cu2SnS3 as anode materials for lithium ion batteries. Journal of Electroanalytical Chemistry 2016, 760, 127-134.
29. Zhai, Y.-T.; Chen, S.; Yang, J.-H.; Xiang, H.-J.; Gong, X.-G.; Walsh, A.; Kang, J.; Wei, S.-H., Structural diversity and electronic properties of Cu2SnX3 (X=S, Se): A first-principles investigation. Physical Review B 2011, 84 (7), 075213.
30. Zawadzki, P.; Baranowski, L. L.; Peng, H.; Toberer, E. S.; Ginley, D. S.; Tumas, W.; Zakutayev, A.; Lany, S., Evaluation of photovoltaic materials within the Cu-Sn-S family. Applied Physics Letters 2013, 103 (25).
31. Kovalenker, V. A., Kuramite, Cu3SnS4, a new mineral of the stannite group. International Geology Review 1981, 23 (3), 365-370.
32. Baranowski, L. L.; Zawadzki, P.; Christensen, S.; Nordlund, D.; Lany, S.; Tamboli, A. C.; Gedvilas, L.; Ginley, D. S.; Tumas, W.; Toberer, E. S.; Zakutayev, A., Control of Doping in Cu2SnS3 through Defects and Alloying. Chemistry of Materials 2014, 26 (17), 4951-4959.
33. Yang, Y.; Ying, P.; Wang, J.; Liu, X.; Du, Z.; Chao, Y.; Cui, J., Enhancing the thermoelectric performance of Cu3SnS4-based solid solutions through coordination of the Seebeck coefficient and carrier concentration. Journal of Materials Chemistry A 2017, 5 (35), 18808-18815.
34. Onoda, M.; Chen, X.-a.; Sato, A.; Wada, H., Crystal structure and twinning of monoclinic Cu2SnS3. Materials Research Bulletin 2000, 35 (9), 1563-1570.
35. Chen, X.; Wang, X.; An, C.; Liu, J.; Qian, Y., Preparation and characterization of ternary Cu–Sn–E (E=S, Se) semiconductor nanocrystallites via a solvothermal element reaction route. Journal of Crystal Growth 2003, 256 (3-4), 368-376.
36. Bouaziz, M.; Amlouk, M.; Belgacem, S., Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films 2009, 517 (7), 2527-2530.
37. Fernandes, P. A.; Salomé, P. M. P.; da Cunha, A. F., CuxSnSx+1(x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. physica status solidi (c) 2010, 901–904.
38. Chen, X.-a.; Wada, H.; Sato, A.; Mieno, M., Synthesis, Electrical Conductivity, and Crystal Structure of Cu4Sn7S16 and Structure Refinement of Cu2SnS3. Journal of Solid State Chemistry 1998, 139 (1), 144-151.
39. Wu, C.; Hu, Z.; Wang, C.; Sheng, H.; Yang, J.; Xie, Y., Hexagonal Cu2SnS3 with metallic character: Another category of conducting sulfides. Applied Physics Letters 2007, 91 (14), 143104.
40. Data, J.-.-I. C. f. D.; Society, A. C., Powder Diffraction File (PDF).: Inorganic Phases. Alphabetical indexes. Sets 1-49. International Centre for Diffraction Data: 1999.
41. Oliva, F.; Arqués, L.; Acebo, L.; Guc, M.; Sánchez, Y.; Alcobé, X.; Pérez-Rodríguez, A.; Saucedo, E.; Izquierdo-Roca, V., Characterization of Cu2SnS3 polymorphism and its impact on optoelectronic properties. Journal of Materials Chemistry A 2017, 5 (45), 23863-23871.
42. Lokhande, A. C.; Yadav, A. A.; Lee, J.; He, M.; Patil, S. J.; Lokhande, V. C.; Lokhande, C. D.; Kim, J. H., Room temperature liquefied petroleum gas sensing using Cu2SnS3 /CdS heterojunction. Journal of Alloys and Compounds 2017, 709, 92-103.
43. Lee, J. Y.; Kim, I. Y.; Surywanshi, M. P.; Ghorpade, U. V.; Lee, D. S.; Kim, J. H., Fabrication of Cu2SnS3 thin film solar cells using Cu/Sn layered metallic precursors prepared by a sputtering process. Solar Energy 2017, 145, 27-32.
44. Aihara, N.; Araki, H.; Tanaka, K., Excitonic and Band-to-Band Transitions in Temperature-Dependent Optical Absorption Spectra of Cu2SnS3 Thin Films. physica status solidi (b) 2017, 1700304.
45. Lokhande, A. C.; Chalapathy, R. B. V.; He, M.; Jo, E.; Gang, M.; Pawar, S. A.; Lokhande, C. D.; Kim, J. H., Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Solar Energy Materials and Solar Cells 2016, 153, 84-107.
46. Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Hong, C. W.; Patil, P. S.; Kim, J. H., Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique. Solar Energy Materials and Solar Cells 2015, 138, 1-8.
47. Chen, Q.; Dou, X.; Ni, Y.; Cheng, S.; Zhuang, S., Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p-n junction interface modification. Journal of Colloid and Interface Science 2012, 376 (1), 327-30.
48. Belaqziz, M.; Medjnoun, K.; Djessas, K.; Chehouani, H.; Grillo, S. E., Structural and optical characterizations of Cu2SnS3 (CTS) nanoparticles synthesized by one-step green hydrothermal route. Materials Research Bulletin 2018, 99, 182-188.
49. Chalapathi, U.; Jayasree, Y.; Uthanna, S.; Sundara Raja, V., Effect of annealing temperature on the properties of spray deposited Cu2SnS3 thin films. Physica Status Solidi A: Applications and Materials Science 2013, 210 (11), 2384-2390.
50. Liang, X.; Cai, Q.; Xiang, W.; Chen, Z.; Zhong, J.; Wang, Y.; Shao, M.; Li, Z., Preparation and Characterization of Flower-like Cu2SnS3 Nanostructures by Solvothermal Route. Journal of Materials Science & Technology 2013, 29 (3), 231-236.
51. Cullity, B. D.; Stock, S. R., Elements of X-ray Diffraction. Prentice Hall: 2001.
52. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition. John Wiley & Sons: 2000.
53. Berg, D. M.; Djemour, R.; Gütay, L.; Siebentritt, S.; Dale, P. J.; Fontane, X.; Izquierdo-Roca, V.; Pérez-Rodriguez, A., Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters 2012, 100 (19), 192103.
54. Fernandes, P. A.; Salomé, P. M. P.; Cunha, A. F. d., A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D: Applied Physics 2010, 43 (21), 215403.
55. Pejjai, B.; Minnam Reddy, V. R.; Gedi, S.; Park, C., Review on earth-abundant and environmentally benign Cu–Sn–X (X = S, Se) nanoparticles by chemical synthesis for sustainable solar energy conversion. Journal of Industrial and Engineering Chemistry 2018, 60, 19-52.
56. Dzhagan, V. M.; Litvinchuk, A. P.; Kruszynska, M.; Kolny-Olesiak, J.; Valakh, M. Y.; Zahn, D. R. T., Raman Scattering Study of Cu3SnS4 Colloidal Nanocrystals. The Journal of Physical Chemistry C 2014, 118 (47), 27554-27558.
57. Vani, V. P. G.; Reddy, M. V.; Reddy, K. T. R., Thickness-Dependent Physical Properties of Coevaporated Cu4SnS4 Films. ISRN Condensed Matter Physics 2013, 2013, 1-6.
58. Hu, H.; Liu, Z.; Yang, B.; Chen, X.; Qian, Y., Template-mediated growth of Cu3SnS4 nanoshell tubes. Journal of Crystal Growth 2005, 284 (1-2), 226-234.
59. Xiong, Y.; Xie, Y.; Du, G.; Su, H., From 2D Framework to Quasi-1D Nanomaterial:  Preparation, Characterization, and Formation Mechanism of Cu3SnS4 Nanorods. Inorganic Chemistry 2002, 41 (11), 2953-2959.
60. Llanos, J.; Buljan, A.; Mujica, C.; Ramirez, R., Electron transfer and electronic structure of KCuFeS2. Journal of Alloys and Compounds 1996, 234 (1), 40-42.
61. Liu, H.; Chen, Z.; Jin, Z.; Su, Y.; Wang, Y., A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst. Dalton Transactions 2014, 43 (20), 7491-7498.
62. C. D. Wanger, W. M. R., L. E. Davis, J. F. Moulder and G. E.Muilenberg, Handbook of X-ray Photoelectron Spectroscopy Perkin-Elmer Corp, Physical Electronics Division, Eden Prairie, Minnesota, USA: 1981.
63. Chen, P.; Su, Y.; Liu, H.; Wang, Y., Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-Ion Storage and Photocatalytic Applications. ACS Applied Materials & Interfaces 2013, 5 (22), 12073-12082.
64. Phaneendra Reddy, G.; Ramakrishna Reddy, K. T., Preparation and Characterization of Cu2SnS3 Thin Films by Two Stage Process for Solar Cell Application. Materials Today: Proceedings 2017, 4 (13), 12401-12406.
65. Jiang, F.; Gunawan; Harada, T.; Kuang, Y.; Minegishi, T.; Domen, K.; Ikeda, S., Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. Journal of the American Chemical Society 2015, 137 (42), 13691-13697.
66. Yuan, M.; Wang, J.-L.; Zhou, W.-H.; Chang, Z.-X.; Kou, D.-X.; Zhou, Z.-J.; Tian, Q.-W.; Meng, Y.-N.; Zhou, Y.-M.; Wu, S.-X., Cu2ZnSnS4–CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catalysis Science & Technology 2017, 7 (18), 3980-3984.
67. Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K., H2 Evolution from Water on Modified Cu2ZnSnS4 Photoelectrode under Solar Light. Applied Physics Express 2010, 3 (10), 101202.
68. Yang, W.; Oh, Y.; Kim, J.; Jeong, M. J.; Park, J. H.; Moon, J., Molecular Chemistry-Controlled Hybrid Ink-Derived Efficient Cu2ZnSnS4 Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters 2016, 1 (6), 1127-1136.
69. Singh, R., Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Solar Energy Materials and Solar Cells 2004, 82 (1-2), 315-330.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code