Responsive image
博碩士論文 etd-0730118-140023 詳細資訊
Title page for etd-0730118-140023
論文名稱
Title
具積體化氯化銀參考電極之高靈敏度有機磷與胺基甲酸鹽微型農藥感測器研發
Development of a High Sensitivity EGFET-based Pesticides Microsensor with Integrated AgCl Reference Electrode for Organophosphorus and Carbamate Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-08-30
關鍵字
Keywords
胺基甲酸鹽、有機磷、銠金雙金屬奈米粒子、延伸式閘極場效電晶體、乙醯膽鹼酯酶、微型參考電極、微型農藥感測器
acetylcholinesterase enzyme, AuRh bimetallic nanocrystals, pesticides microsensor, carbamates, micro reference electrode, extended gate field-effect transistor, organophosphorus
統計
Statistics
本論文已被瀏覽 5679 次,被下載 1
The thesis/dissertation has been browsed 5679 times, has been downloaded 1 times.
中文摘要
農藥雖有助於農產品的收成,但其毒性不僅會破壞地表的生態環境,殘留在蔬果上之農藥如進入消費者的體內,更會危害人體健康,因此在消費者食用蔬果前,能快速檢測蔬果上之農藥殘留量是否符合國家法規所訂定的最大殘留量,顯得相當重要。本論文致力於將微型參考電極與延伸式閘極場效電晶體整合於同一晶片上,以開發可即時檢測有機磷及胺基甲酸鹽微型農藥感測器。
  本論文在有機磷農藥檢測上使用乙醯膽鹼酯酶作為其感測薄膜,利用有機磷對乙醯膽鹼酯酶活性抑制的原理進行檢測;而胺基甲酸鹽之農藥檢測則選擇銠金雙金屬奈米粒子作其感測薄膜,以胺基甲酸鹽與銠金雙金屬結合而產生表面電位的變化來感測其濃度。本論文以微機電系統技術製作具積體化氯化銀參考電極之有機磷與胺基甲酸鹽微型農藥感測器,包含銀/氯化銀準參考電極、延伸式閘極場效電晶體與氯化鉀洋菜膠封裝晶片三部分,其製程步驟共包含八道黃光微影及八道薄膜沉積製程。
  本論文製作完成之微型農藥感測器尺寸為1 cm × 1.2 cm × 0.1 cm,延伸式閘極感測區面積為0.8 mm × 0.8 mm。根據量測結果顯示,於0.001 ppm ~ 10 ppm濃度量測範圍下,有機磷感測靈敏度為425 mv/dec、線性度為0.927;另外於0.001 ppm ~ 1 ppm濃度量測範圍下,胺基甲酸鹽感測靈敏度為268.1 mv/dec、線性度為0.974。由上述量測結果顯示,本論文所開發之具積體化氯化銀參考電極有機磷與胺基甲酸鹽微型農藥感測器,具有體積小、高靈敏度及高線性度之優點,未來能將此商業化並方便應用於家中量測農藥殘留。
Abstract
Although pesticides contribute to the harvest of agricultural products, their toxicity will not only damage the ecological environment of the surface, but also endanger human health. Therefore, it is very important to quickly detect whether the pesticide residue on fruits and vegetables meets the maximum residue’s levels of national regulations prior to consumers eat fruits and vegetables. This thesis aims to develop a extended gate field-effect transistor (EGFET)-based pesticide microsensor with an integrated AgCl reference electrode for organophosphorus and carbamates detection.
In this paper, acetylcholinesterase enzyme (AChE) is immobilized by cross-linking method on the extended gate electrode of the EGFET for organophosphorus detection due to the activity inhibition. AuRh bimetallic nanocrystals are selected as the ion selective membrane for carbamate detection because of their ultra-specific responses toward carbamate pesticides. The extended gate field-effect transistor (EGFET)-based pesticides microsensor with an integrated AgCl reference electrode is developed utilizing micro-electromechanical system (MEMS) technology. The main processing steps in this study involve eight photolithographic and eight thin-film deposition processes.
The chip size of the proposed EGFET-based pesticide microsensor is 1 cm × 1.2 cm × 0.1 cm, and the sensing area is 0.8 mm × 0.8 mm. Based on the measurement results, the sensitivity and sensing linearity of the organophosphorus microsensor are 425 mV/dec and 0.927 , respectively, as the sensing pesticides concentration varies from 0.001 ppm to 10 ppm. At the same situations, the carbamate (268.1 mV/dec and 0.974) were also presented in this paper.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1感測方法介紹 4
1.2.2參考電極介紹 6
1.3 實驗方法及論文架構 8
第二章 微型農藥感測器之原理介紹 9
2.1 參考電極原理介紹 9
2.1.1 電極反應 9
2.1.2 質量傳遞 10
2.2 延伸式閘極感測場效電晶體原理介紹 11
2.3 有機磷感測機制 14
2.3.1 有機磷介紹 14
2.3.2 乙醯膽鹼與乙醯膽鹼酯酶介紹 15
2.3.3 有機磷感測機制 15
2.4 胺基甲酸鹽感測機制 17
2.4.1 胺基甲酸鹽介紹 17
2.4.2 胺基甲酸鹽感測機制 17
第三章 農藥感測器之設計與製作 19
3.1 微型參考電極與延伸式閘極場效電晶體與氯化鉀洋菜膠 19
3.1.1 微型參考電極與延伸式閘極場效電晶體元件結構與佈局設計 19
3.1.2 微型參考電極與延伸式閘極場效電晶體元件製程整合 23
3.1.3 氯化鉀洋菜膠設計與製作 32
3.2 具積體化氯化銀參考電極之可攜式微型農藥感測晶片 38
3.2.1 具積體化氯化銀參考電極之延伸式閘極場效電晶體晶片 38
3.2.2 有機磷感測薄膜配製 40
3.2.3 胺基甲酸鹽感測薄膜配製 41
3.2.4 情境模擬 43
第四章 實驗結果與討論 45
4.1 延伸式閘極場效電晶體特性與分析 46
4.2 具積體化氯化銀參考電極之微型農藥感測器特性量測分析 47
4.2.1 有機磷感測靈敏度及線性度分析 48
4.2.2 胺基甲酸鹽感測靈敏度及線性度分析 50
4.2.3 微型農藥感測器之比較 52
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
參考文獻 56
參考文獻 References
[1] B.E. Mileson, “Common Mechanism of Toxicity in Pesticides,” Encyclopedia of Toxicology‚1024-1025 (2014)
[2] R.C.Gupta, “Carbamate Pesticides,” Encyclopedia of Toxicology‚661-664 (2014)
[3] S.A.Burr, “DDT (Dichlorodiphenyltrichloroethane) ,” Encyclopedia of Toxicology‚1141-1143 (2014)
[4] 衛生福利部食品藥物管理署,農藥殘留容許量標準,Available online: https://consumer.fda.gov.tw/Law/PesticideList.aspx?nodeID=520
[5] S. Lacorte, C. Molina and A. Barcelo, “Screening of organophosphorus pesticides in environmental matrices by various gas chromatographic techniques,” Anal. Chim. Acta 281, 71-84 (1993).
[6] Y. Pico, A. J. Louter, J. J. Vreuls and U. A. Brinkman, “On-line trace-level enrichment gas chromatography of triazine herbicides, organophosphorus pesticides, and organosulfur compounds from drinking and surface waters,” Analyst 119, 2025-2031 (1994).
[7] J. M. Abad, F. Pariente, L. Hernandez, H. D. Abruna and E. Lorenzo “Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor,” Anal. Chem. 70, 2848-2855 (1998).
[8] T. Hamers, M. G. D. Smit, A. J. Murk and J. H. Koeman, “Biological and chemical analysis of the toxic potency of pesticides in rainwater,” Chemosphere 45, 609-624 (2001).
[9] A. N. Ivanov, G. A. Evtugyn, R. E. Gyurcsanyi, K. Toth and H. C. Budnikov, “Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination,” Anal. Chim. Acta 404, 55-65 (2000).
[10] M. S. Frant, “Historical perspective. History of Early Commercialization of Ion-Selective Electrodes,” Analyst 119, 2293-2301 (1994).
[11] J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuators 4, 291-298 (1983).
[12] D. P. Brezinski, “Kinetic static and stirring errors of liquid junction reference electrodes,” Analyst. 108, 425-442 (1983).
[13] J. Chen, K. Iwama, K. J. Aoki and T. Nishiumi, “Self-dispersion of mercury droplets from saturated calomel electrodes into solutions,” Int. J. Electrochem. Sci. 8, 7394-7400 (2013).
[14] G. Eni, Silver/silver-chloride electrode, KTF-Split. Croatia (2017). Available online: http://glossary.periodni.com
[15] K. Shimada, M. Yano, K. Shibatani, Y. Komoto, M. Esashi and T. Matsuo, “Application of catheter-tip i.s.f.e.t. for continuous in-vivo measurement,” Med. Biol. Eng. Comput. 18, 741-745 (1980).
[16] R. L. Smith and D. C. Scott, “An integrated sensor for electrochemical measurements,” IEEE Trans. Biomed. Eng. 33, 83-90 (1986).
[17] I.-Y. Huang, R.-S. Huang and L.-H. Lo, “Improvement of integrated/Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications,” Sens. Actuators B: Chem. 94, 53-64 (2003).
[18] M. W. Shinwari, D. Zhitomirsky, I. A. Deen, P. R. Selvaganapathy, M. J. Deen and D. Landheer, “Microfabricated reference electrodes and their biosensing applications,” Sens. 10, 1679-1715 (2010).
[19] 吳浩青、李永舫,電化學動力學,科技圖書 (2001)。
[20] 格里弟著,鮮祺振譯,電極動力學,徐氏基金會出版 (1996)。
[21] 高潁、鄔冰,電化學基礎,化學工業出版社 (2004)。
[22] B. Johan, A. Ivaska, and A. Lewenstam, “Potentiometric Ion Sensors,” Chem. Rev. 108, 329-351 (2008).
[23] D. E. Yates, S. Levine and T. W. Healy, “Site-binding mode of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans. 70, 1807-1818 (1974).
[24] 有機磷-環境毒物與健康Available online:
https://sites.google.com/site/organicphosphate/home/you-ji-lin-jie-shao
[25] H. Schulze, S. Vorlovıa, F. Villatte, T. T. Bachmann and R.D. Schmid, “Design of acetylcholinesterases for biosensor applications,” Biosens. Bioelectron. 18, 201-209 (2003).
[26] D. Lu, J. Wang, L. Wang, D. Du, C. Timchalk, R. Barry and Y. Lin, “A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents”, Adv. Funct. Mater. 21, 4371-4378 (2011).
[27] B. B. Narakathu, W. Guo, S. O. Obare and M. Z. Atashbar, “Novel approach for detection of toxic organophosphorus compounds”, Sens. Actuators B: Chem. 158, 69-74 (2011).
[28] S. Laschi, D. Ogonczyk, I. Palchetti and M. Mascini, “Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors,” Enzyme Microb. Technol. 40, 485-489 (2007).
[29] S. Laschi, D. Ogonczyk, I. Palchetti, M. Mascini, “ Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors,” Enzyme Microb. Technol. 40, 485-489 (2007).
[30] O. Shulga, J. R. Kirchhoff, “An acetylcholinesterase enzyme electrode stabilized by
an electrodeposited gold nanoparticle layer,” Electrochem. Commun. 9, 935-940 (2007).
[31] C.-Y. Cheng, S. Thiagarajan and S.-M. Chen, “Electrochemical fabrication of AuRh nanoparticles and their electroanalytical applications,” Int. J. Electrochem. Sci. 6, 1331-1341 (2011).
[32] X. Ma, R. Lin, R. Y. Ofoli, Z. Mei and J. E. Jackson, “Structural and morphological evaluation of Ru-Pd bimetallic nanocrystals,” Mater. Chem. Phys. 173, 1-6, (2016).
[33] A. L. Querejeta, M. C. Barrio, S. G. Garcia, “Electrochemical synthesis of RhPd bimetallic nanoparticles onto a glassy carbon surface,” J. Electroanal. Chem. 778, 98-102 (2016).
[34] Z. F. Chen, Y. Zhang, J. Q. Xu, P. C. Xu and X. X. Li, “Non-enzymatic specific detection of carbamate pesticides based on monodisperse gold-rhodium alloy nanocrystals,” in Proc. 18th Int. Conf. on Solid-sate Sensors, Actuators and Microsystems (TRANSDUCERS’ 2015), pp. 1503-1506, Alaska, USA (2015).
[35] 蘇冠介,具積體化氯化銀參考電極之可攜式微型氯離子感測晶片開發,中山大學電機工程學系碩士論文 (2017)。
[36] 邱見泰,微型氯化銀參考電極之封裝與電化學特性分析,中山大學電機工程學系碩士論文 (2004)。
[37] 朱吉植,平面式微型氯化銀參考電極之晶圓級封裝與電化學特性分析之研究
,中山大學電機工程學系碩士論文 (2008)。
[38] 洪偉哲,含積體化氯化銀參考電極之二氧化碳微型氣體感測器開發,中山大學電機工程學系碩士論文 (2013)。
[39] 李麗娟,可快速檢測有機磷與胺基甲酸鹽之微型農藥感測器研發中山大學電機工程學系碩士論文 (2017)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code