Responsive image
博碩士論文 etd-0730118-144650 詳細資訊
Title page for etd-0730118-144650
論文名稱
Title
三氯乙烯地下水污染場址整治成效分析—實場案例研究
Remediation of trichloroethylene-contaminated groundwater: Performance evaluation at a case study site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-08-30
關鍵字
Keywords
三氯乙烯、生物整治、生物復育試劑
Dehalococcoides, bioremediation, TCE
統計
Statistics
本論文已被瀏覽 5660 次,被下載 0
The thesis/dissertation has been browsed 5660 times, has been downloaded 0 times.
中文摘要
本場址自民國90年發現三氯乙烯污染後,陸續執行污染改善工作,經 92~94 年間以高錳酸鉀執行現地化學氧化法後,雖污染濃度低於管制標準,但停止注藥後全場區污染濃度回升,回升最高污染濃度約4.0 mg/L。而後為避免污染擴散至場區外,遂於98~100年開始進行地下水污染擴散控制,可有效控制污染團於場區內,但對低污染濃度去除效果有限,因此於101~103年挑選2區高污染濃度進行生物復育模場試驗,灌注生物藥劑後可促進脫氯菌群進行脫氯作用,以降低污染濃度。本研究目的為:(1)利用水力控制進行場址污染擴散控制,以限制污染範圍且避免擴散至下游區域;(2)污源生物復育:本研究選擇一生物復育試驗場址,針對南側GW1井,研擬本場址長期整治方案,以增進地下水控制成效;(3)污染範圍監測:配合地下水污染改善方案之進行,選擇合適既有監測井,定期檢測地下水水質,研擬場址長期監測研究以評估污染範圍變化。
本研究乃進行全場區生物復育工作,採取分階段生物藥劑灌注,並搭配地下水污染控制,依106年9月分析結果,目前全場區地下水TCE濃度已低於管制標準,其中污染源GW1井105年2月地下水TCE濃度自0.107 mg/L,至106年9月已無檢出TCE,約18個月無濃度回升情形;此外,計算地下水污染範圍變化,在105~106年全場區地下水TCE濃度>0.05 mg/L污染面體積中,三氯乙烯污染體積自349~702 m3降至0 m3,顯示全場區地下水污染濃度及污染體積已獲得改善,且地下水污染物濃度低於管制標準,符合污染削減與污染範圍控制之研究目標。本研究成果,經污染源生物復育後,增強脫氯菌群生長,使得地下水污染擴散控制,並可達到發展生物整治系統以提升TCE還原脫氯效率之目的。
Abstract
TCE contamination was discovered in 2011 at the research site, and the remediation has been processed since then. After applying KMnO4 for ISCO between 2013 and 2015, TCE concentration reduced under maximum contaminant level (MCL). However, after stopping injecting substrate, concentration has found bounce back at 4.0 mg/L. To avoid TCE spreading, ground water diffusion control action had been applied between 2009 and 2011 to stopping TCE spreading out of research site. However, the effect to low contamination concentration is limited. Therefore, between 2012 and 2014, two high contamination concentration sites had been selected to apply bioremediation method. Substrate injection can stimulate Dehalococcoides to perform reductive dechlorination of chlorinated ethenes. In that case, concentration will decrease.
Objectives of this research included the following (1) Using hydraulic control method to stop contamination from spreading outer research site. (2) Bioremediation: focusing on south of research site at GW1 well to assess long term remediation plan to improve the effective of remediation. (3) Contaminated area monitoring: in conjunction with groundwater contaminated improvement program. Selecting appropriate and existing monitoring wells to exam groundwater quality regularly to develop long term monitoring plan to assess the changes of contamination coverage.
The study applied bioremediation method in the entire research site, adopting phased substrate injection with groundwater contamination control. Result on September 2017 showed the TCE contamination concentration were under MCL. GW1 which showed TCE concentration at 0.107 mg/L on February 2016 examine none TCE concentration on September 2017 and last 18 months. Additionally, the changes of contamination coverage had been calculated. Between 2016 and 2017, TCE contamination were lower than 0.05 mg/L. in contamination coverage, TCE contamination volume decreased from 349~702 m3 to 0 m3 indicated the contamination concentration and volume were reduced and under MCL. Consequently, effective of reducing concentration TCE contamination and control contamination coverage were successful in this study. The results indicate that after performing bioremediation process in contaminated source area, the growth of Dehalococcoides can be enhanced, the diffusion of target contaminants in groundwater can be controlled, and the development of bioremediation system to improve the efficiency of TCE reductive dechlorination can be achieved.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 地下水污染及含氯有機污染物種類 3
2.1.1 三氯乙烯之物理化學特性 5
2.1.2三氯乙烯傳輸途徑 7
2.2 地下水污染整治技術 8
2.2.1 物理及化學處理技術 8
2.2.2 現地生物復育技術 9
2.3 三氯乙烯之生物降解 11
2.3.1 好氧生物降解 11
2.3.2 厭氧生物降解 12
2.4 不同油品及基本特性 13
2.4.1 營養基質種類及特性 13
2.4.2 界面活性劑的種類 14
第三章 研究方法 17
3.1 研究執行流程 17
3.2 場址污染現況調查 18
3.2.1污染調查 18
3.2.2 污染範圍控制 23
3.3 地下水污染擴散控制 28
3.4 生物復育技術 35
3.5 成果驗證規劃 38
第四章 研究成果 40
4.1 糖蜜灌注成果 40
4.2 松下液態藥劑灌注成果 42
4.3 乳化油灌注成果 55
4.4 地下水質檢測成果 58
第五章 結論與建議 59
5.1 結論 59
5.2 建議 60
參考文獻 61
附件
博、碩士學位考試口試委員意見修正書 68
參考文獻 References
1. Antizar-Ladislao, B. (2010) Bioremediation: working with bacteria. Elements 6, 389–394.
2. Broholm, K., Ludvigsen, L., Thorkild, F.J., and Ostergaard H. (2005) Aerobic biodegradation of vinyl chloride and cis-1,2-dichloroethylene in aquifer sediments. Chemosphere60:1555-1564.
3. Cheng, H., Hu, E., and Hu, Y. (2012) Impact of mineral micropores on transport and fate of organic contaminants: a review. J. Contam. Hydrol. 129–130, 80–90.
4. Cheng, Y., Holman, H.Y., and Lin, Z. (2012) Remediation of chromium and uranium contamination by microbial activity. Elements 8, 107–112.
5. Claudia, G.B., Alberto O., Claudio, G.O., García-Solares S.M., Bastida-González, F., and Zárate-Segura, P.B. (2014) Enhanced sulfate reduction and trichloroethylene (TCE) biodegradation in a UASB reactor operated with a sludge developed from hydrothermal vents sediments: Process and microbial ecology. International Biodeterioration & Biodegradation Volume 94, Pages 182–191.
6. Davis, G. (2013) Davis Vapour intrusion into buildings: some things we know and some things we need to know Remediat. Australas , Page 8–10.
7. Eaddy, A. (2008) Scale-up and characterization of an enrichment culture for bioaugmentation of the P-area chlorinated ethene plume at the Savannah River site. MS Thesis. Clemson University, Clemson, SC, USA.
8. ECSA (2012) Product Safety Summary on Trichloroethylene (Brussels, Belgium).
9. Fennell, D.E., Gossett, J.M., and Zinder, S.H. (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environmental Science & Technology, 31(3), 918-926.
10. Frascari, D., Zanaroli, G., and Danko, A.S. (2015) In situ aerobic cometabolism of chlorinated solvents: A review. Journal of hazardous materials, 283, 382-399.
11. Glauser, J., and Ishikawa, Y. (2008) C2 Chlorinated Solvents. In CEH Marketing Research Report. Menlo Park, CA: SRI Consulting.
12. Hopkins, G.D. and McCarty, P.L. (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environmental science & technology, 29(6), 1628-1637.
13. Huang, B.B., Lei C., Wei, C.H., and Zeng, G.M. (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies. Environment International 71, 118–138.
14. Kavanaugh, M.C., Suresh, P., Rao, C. 2003. The DNAPL remediation challenge: Is there a case for source depletion? ENVIRONMENTAL PROTECTION AGENCY WASHINGTON DC.
15. Kurt, Z., Mack, E.E., and Spain, J.C. (2014) Biodegradation of cis-Dichloroethene and Vinyl Chloride in the Capillary Fringe. Environmental science & technology, 48(22), 13350-13357.
16. Lowe, S.E., Jain, M.K., and Zeikus, J.G. (1993) Biology, ecology, and biotechnological applications of anaerobic-bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509.
17. Mattes, T.E., Jin, Y.O., Livermore, J., Pearl, M., and Liu, X. (2015) Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene. Applied microbiology and biotechnology, 1-10.
18. McCarty, P.L. (2010)Groundwater contamination by chlorinated solvents: History, remediation technologies and strategies. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 1–28.
19. Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., and Naidu, R., (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37, 1362–1375.
20. Mirabelli, D., and Kauppinen, T. (2005) Occupational exposures to carcinogens in Italy: an update of CAREX database. Int J Occup Environ Health 11, 53–63.
21. Mohn, W.W. and Tiedje, J.M., (1992) Microbial reductive dehalogenation. Microbiological Review, 56(3): 482–507.
22. Morelli, I.S., Saparrat, M.C.N., Del Panno, M.T., Coppotelli, B.M., and Arrambari, A. (2013) Bioremediation of PAH-contaminated soil by fungi. In: Gultapeh, I.M., Danesh, Y.R., Varma, A. (Eds.), Fungi as Bioremediators. Springer, Berlin, Page 159–179.
23. Nagasawa, Y., Ukai, H., Okamoto, S., Samoto, H., Itoh, K., and Moriguchi, J. (2011) Organic solvent use in enterprises in Japan. Ind Health 49, 534–541.
24. Nakano, Y., Li, Q.H., and Nishijim, W. A. (2000) Biodegradation of trichloroethylene(TCE) adsorbed on granular activate carbon(GAS). Water Research 34(17):4139-4142.
25. Paul, L., Jakobsen, R., Smolders, E., Albrechtsen, H.J., and Bjerg, P.L. (2015) Reductive dechlorination of trichloroethylene (TCE) in competition with Fe and Mn oxides–observed dynamics in H2-dependent terminal electron accepting processes. Geomicrobiology Journal, 00-00.
26. Philips, J., Maes, N., Springael, D., and Smolders, E. (2013) Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: Experimental demonstration in diffusion-cells. Journal of Contaminant Hydrology 147 : 25-33.
27. Philp, J.C., Bamforth, S.M., Singleton, I., and Atlas, R.M. (2005) Environmental pollution and restoration: a role for bioremediation. In: Atlas, R.M., Philp, J.C. (Eds.), Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup. ASM press, Washington, D.C., pp. 1–48.
28. Powell, C.L., Goltz, M.N., and Agrawal, A. (2014) Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots. Journal of contaminant hydrology, 170, 68-75.
29. Rivett, M.O., Wealthall, G.P., Dearden, R.A., and McAlary, T.A. (2011) Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of contaminant hydrology, 123(3), 130-156.
30. Robinson, C., Barry, D.A., McCarty, P.L., Gerhard, J.L., and Kouznetsova, I. (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407:4560–4573.
31. SERDP and ESTCP (Remediation Technology Monograph Series). (2014) Chlorinated Solvent Source Zone Remediation.
32. Smulke, W., Zdarta, A., Luczak, M., Krawczyk, P., Jesionowski, T., and Kaczorek, E. (2016) Sqpindus saponios’ impact on hydrocarbon biodegradation by bacteria strains shor- and long-term contact with pollutant. Colloids and Surfaces B: Biointerfaces, Volume 142 , Pages 207-213.
33. Vogel, T.M., Criddle, C.S., and McCarty, P.L. (1987) ES&T critical reviews: transformations of halogenated aliphatic compounds. Environmental Science & Technology, 21(8), 722-736.
34. Von Grote, J., Hurlimann, C., Scheringer, M., and Hungerbuhler, K. (2003) Reduction of occupational exposure to perchloroethylene and trichloroethylene in metal degreasing over the last 30 years: influences of technology innovation and legislation. J Expo Anal Environ Epidemiol 13, 325–340.
35. Wang, S.Y., Kuo, Y.C., Huang, Y.Z., Huang, C.W., and Kao, C.M. (2015) Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. Environmental Pollution, 203, 97-106.
36. Xie, W., Yuan S.H., Mao, X.H., Hu, W., Liao, P., Tong, M., Alshawabkeh, A.N. (2013) Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.Water Res., 47, pp.3573-3582.
1. 行政院環保署,2013,污染場址綠色及永續整治策略研擬研究。
2. 何春蓀,1996,臺灣地質圖概論:臺灣地質圖說明書,共 147 頁。
3. 吳呈懋,2005,地下水系統孔系介質尺度效應於異質性地層參數化方法 之研究,國立臺灣大學土木工程學研究所博士論文。
4. 吳育生,2007,利用觀測井分析水平地下水流及含水層海測邊界之研究, 國立成功大學資源工程研究所博士論文。
5. 吳樂群,1993,臺灣南部旗山地區晚新第三系至第四系之沉積層序與演 化。國立臺灣大學地質研究所博士論文,共 212 頁。
6. 高雄縣環保局,2010,高雄縣大寮鄉福德爺廟場址補充細密調查及地下 水污染控制暨監測研究。
7. 高雄縣環保局,2001,高雄縣大寮鄉福德宮前地下水污染調查計劃(第一 期及第二期)。
8. 高雄縣環保局,2002,高雄縣大寮鄉福德宮前地下水污染調查研究之補 充調查。
9. 高雄縣環保局,2005,大寮鄉義仁村赤崁福德爺廟地下水污染改善研究。
10. 高雄縣環保局,2011,99 年度高雄縣大寮鄉紅蝦山場址土壤及地下水細密調查研究。
11. 高雄縣環保局,2014,高雄市大寮區福德爺廟場址地下水污染後續控制 及監測研究。
12. 許世孟、翁孟嘉、曾慶恩、顧承宇、譚志豪,2006,應用雙封塞水力試 驗探討裂隙岩體之水力特性。2006 岩盤工程研討會論文集。
13. 陳華玟、吳樂群、謝凱旋、何信昌,1998,臺灣地質圖幅說明書-高雄圖 幅,經濟部中央地質調查所。
14. 經濟部工業局,2008,含氯碳氫化合物土壤及地下水污染預防與整治技 術手冊。
15. 劉志忠,2006,零價鐵反應牆應用於三氯乙烯還原脫氯之整合研究,國 立中央大學環境工程研究所博士論文。
16. 林朝棨,1957,臺灣地形,臺灣省文獻委員會。
17. 楊潔豪,2007,應用地電阻影像法調查地層中 DNAPL 污染團,台灣體 壤及地下水環境保護協會簡訊。第 25 期,第 3-6 頁。
18. 王茂松、馬振耀、潘時正、劉志忠、蔡昀達,2011,異質性水文地質特 徵調查技術及案例分析。中華民國環境工程學會第 22 卷第 1 期。
19. 王祖興、謝紅貞編譯,David P. Clark原著(2008),分子生物學中英文導讀本,高立圖書有限公司。
20. 王鳳英編繹,刈米孝夫原著(1993),“介面活性劑的原理與應用”,高立圖書有限公司。
21. 台灣砂糖事業部,2008,糖蜜活性指標成分之分離及其總抗氧化力之測 定(新)。
22. 日本松下公司技術資料編號 TR-AMP0312、0320、0324、0326,2012。
23. 經濟部中央地質調查所 http://fault.moeacgs.gov.tw/TaiwanFaults_2009/PageContent.aspx?type=C&i d=238&140。
24. 許藝騰(2015),應用具pH及硫化氫控制特性之長效型膠體基質處理受含氯有機溶劑污染地下水,國立中山大學環境工程研究所。
25. 韓吟龍(2010),地下水中三氯乙烯生物處理技術漫談,桃園縣大學校院產業環保技術服務團,環保簡訊第六期。
26. 環保署(2016),行政院環保署公告網(http://atftp.epa.gov.tw/announce/)
27. 環保署(2016),行政院環保署土壤及地下整治網(http://sgw.epa.gov.tw/)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.84.155
論文開放下載的時間是 校外不公開

Your IP address is 3.144.84.155
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code