Responsive image
博碩士論文 etd-0731100-143712 詳細資訊
Title page for etd-0731100-143712
論文名稱
Title
以觸媒氧化法處理一氧化氮之研究
The Study of Catalytic Oxidation of Nitrogen Monoxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-27
繳交日期
Date of Submission
2000-07-31
關鍵字
Keywords
含浸法、活化能、積分反應實驗法、空床停留時間、銅觸媒、反應動力、觸媒氧化法
activation energy, kinetic model, integral method, Cu-catalysts, impregnation method, catalytic oxidation, empty bed residence time
統計
Statistics
本論文已被瀏覽 5685 次,被下載 2015
The thesis/dissertation has been browsed 5685 times, has been downloaded 2015 times.
中文摘要
本研究嘗試以觸媒氧化法來處理一氧化氮,使用之觸媒為以含浸法(Impregnation)製備之載體銅觸媒,包括Cu/TiO2、Cu/Al2O3、Cu/SiO2。處理後之產物二氧化氮雖然毒性比一氧化氮還高,但是水溶性佳,以純水或鹼液即可將其完全吸收,達到去除氣相污染物的目的。
實驗探討的部份共分為:觸媒之篩選、操作參數之探討與反應動力之推求。在觸媒篩選方面,本實驗探討以三種銅離子來源(硝酸銅、醋酸銅、硫酸銅)與三種載體(TiO2、Al2O3、SiO2)配置成之觸媒活性大小作一比較,結果顯示以硝酸銅配置之Cu/TiO2處理效果較佳,且有較寬廣之溫度操作區間,並比較不同銅附載量得知,8wt.%是最經濟之量,所以本部份實驗結果顯示8wt.%之Cu/TiO2為最佳的選擇。
在操作參數探討方面,NO入口濃度的大小會對觸媒氧化效率造成影響,在入口濃度大於1000ppm時,濃度越高,轉化率會越低,而在入口濃度小於1000ppm時轉化率幾乎不隨入口濃度而變化。在空間速度的選擇方面,實驗結果顯示,空間速度為15000 hr-1,也就是空床停留時間約在0.24秒時為較經濟的操作條件。而在水氣的影響方面,高的絕對溼度確實會對反應造成抑制之效果,可是抑制的情形很輕微,所以本觸媒氧化反應亦適合在高濕度下操作。
最後一部份探討反應動力式,本實驗之反應動力以積分反應實驗法求取。可得到正、逆反應之活化能分別為15.8kcal/mole與25.9 kcal/mole。由預測值與實驗值之比對可得本模式適用條件為:NO入流濃度介於300-1000ppm,停留時間約在0.12-0.48之間,絕對濕度在4854-42475ppm。
Abstract
The study of catalytic oxidation on the removal of NO was investigated over the Cu-catalysts . The Cu-catalysts , including Cu/TiO2 , Cu/Al2O3 and Cu/SiO2 , were prepared by impregnation method . Alougth NO2 , the product of this reaction , has higher toxicity than NO , but it might be removed completely by absorption with H2O or alkalinal solution for its high solubility .

The experiments can be divided into three parts , i.e. , the screen of test catalysts , the effect of operating factors on the conversion of NO and the kinetic model . In the first part , the activity of test catalysts , which were prepared by mixing three various sources of Cu-ions(i.e., Cu(NO3)2 , Cu(CH3COO)2 , and CuSO4)with three different types of support(i.e., TiO2 , Al2O3 , and SiO2), and were compared in form of conversion on NO to find the best catalyst . The results show that the mixture Cu(NO3)2 / TiO2 has the good performance on the conversion of NO , and also has more wider operating in range of temperature . In order to find the optimal loading of Cu on Cu(NO3)2 / TiO2 , additional test of various dosage over the catalysts was conduct in series . It is found that 8wt.% of Cu loading on Cu(NO3)2 / TiO2 is the most economic dosage . Therefore , we select this type of Cu oxide as the best catalyst in the following work .

In the second part , the effect of NO inlet concentration , space velocity and humidity on the conversion of NO were performed . The results show that the conversion of NO decreases with the increasing of [NO]in when [NO]in is larger than 1000ppm;the conversion of NO is not changed with [NO]in when [NO]in is lower than 1000ppm . The better space velocity is 15000hr-1 , i.e.,the empty bed residence time is 0.24 second . The reaction on NO conversion would be restrained by higher humidity contenting in inlet gas stream , but the effect of inhibition on NO conversion is not significant .

Finally , the kinetics of the oxidation of NO over 8wt.% Cu(NO3)2 / TiO2 was obtained by integral method .It is found that the oxidations of NO can be described by first order reversible reaction and the observed activation energy are 15.8 kcal/mole(forward reaction)and 25.9 kcal/mole(backward reaction), respectively . By comparing the conversion of predicted NO with the experimentals , we can find the suitable operation conditions in application of the kinetic model : the inlet concentration of NO in a range of 300-1000ppm , the empty-bed residence time ranging from 0.12-0.48 second , and the absolute humidity ranging from 4854 to 42475ppm .
目次 Table of Contents
謝誌…………………………………………………………I
中文摘要……………………………………………………II
英文摘要……………………………………………………IV
目錄…………………………………………………………VI
表目錄……………………………………………………VIII
圖目錄………………………………………………………X
符號說明…………………………………………………………XII

第一章、 前言………………………………………………1

1-1 研究緣起………………………………………………1
1-2 一氧化氮的特性………………………………………2
1-3 一氧化氮的生成與排放………………………………3
1-4 一氧化氮的控制技術…………………………………3
1-5 研究目的………………………………………………6

第二章、 文獻回顧………………………………………10

2-1 觸媒氧化法之原理與發展……………………………10
2-2 以觸媒氧化法處理一氧化氮之可行性評估…………11
2-3 觸媒之製備條件探討…………………………………12
2-3-1 觸媒的種類與特性比較…………………………12
2-3-2 銅離子來源對銅觸媒催化能力之影響…………13
2-3-3 銅離子附載量對催化能力之影響………………15
2-3-4 載體對觸媒活性之影響…………………………16
2-4 操作參數之探討………………………………………19
2-4-1 操作溫度…………………………………………19
2-4-2 空間速度…………………………………………21
2-4-3 NO進流濃度………………………………………21
2-4-4 水氣濃度…………………………………………22
2-5 反應動力之推求………………………………………22

第三章、 觸媒的製備與鑑定方法………………………27

3-1 觸媒的製備方法………………………………………27
3-2 觸媒的鑑定……………………………………………27
3-2-1 X射線繞射分析(XRD)…………………………27
3-2-2 比表面積測量(BET)……………………………29
3-2-3 掃描式電子顯微鏡與能量分散成分分析……30



第四章、 實驗設備與研究方法…………………………31

4-1 化學藥品………………………………………………31
4-2 實驗設備與分析儀器…………………………………32
4-2-1 實驗設備………………………………………32
4-2-2 分析儀器………………………………………34
4-3 設備操作與實驗步驟…………………………………35
4-3-1 設備操作………………………………………35
4-3-2 實驗步驟………………………………………35
4-4 實驗之設計……………………………………………37
4-4-1 觸媒之鑑定……………………………………37
4-4-2 觸媒之篩選……………………………………39
4-4-3 操作參數之探討………………………………40
4-4-4 反應動力之推求………………………………41

第五章、 結果與討論……………………………………45

5-1 觸媒之物性分析………………………………………45
5-1-1 BET比表面積測量……………………………45
5-1-2 XRD(X-射線繞射分析)………………………45
5-1-3 SEM掃描式電子顯微鏡與EDS成分分析……51
5-2 觸媒之篩選試驗…………………………………56
5-2-1 不同銅離子來源配置之銅觸媒活性比較…56
5-2-2 不同載體配置之銅觸媒活性比較…………60
5-2-3 銅附載量對銅觸媒活性比較………………62
5-3 操作參數之探討…………………………………65
5-3-1 不同NO進流濃度對NO轉化率之影響………65
5-3-2 空間速度的大小對NO轉化率之影響………67
5-3-3 水氣濃度對NO轉化率之影響………………67
5-4 反應動力之推求…………………………………69

第六章、 結論……………………………………………77

參考文獻……………………………………………………79

附錄I R.H.與A.H.於室溫下之換算表…………………83

附錄II 實驗操作條件與原始數據………………………84
參考文獻 References
1、黃正義編譯,”空氣污染污源與防治”,1991。
2、沈孝宗,”以波洛斯凱特型觸媒催化一氧化氮還原反應之比較研究”,國立成功大學化工研究所博士論文,1998。
3、固定污染源空氣污染物排放標準,行政院環保署,1994。
4、Sada, E., H. Kumazawa, I. Kudo and T. Konodo, “Absorption of NO in Aqueous Mixed Solutions of NaClO2 and NaOH”, Chem. Eng. Sci., Vol.33,p.315-318, 1978.
5、Shigeo Uchida, Shizeo Kageyama, and Tsuguo Kobayash, “Absorption of Nitrogen Monoxide into Aqueous KMnO4/NaOH and Na2SO3/FeSO4 Solution”, I&EC Process Des. Dev.,22(2), p.323-329, 1983.
6、朱信,簡聰文,”煙道氣濕式除硫除氮整合系統之研究”,第十屆空氣污染控制技術研討會論文集,1993。
7、Chang, S.G., Littlejohn, D., and Lynn, S., ”Effects of Metal Chelates of Wet Flue Gas Scrubbing Chemistry”, Environ. Sci. Technol., Vol. 17, p.649-653, 1983.
8、Sada, E., Kumazawa, H., and Yoshikawa, Y., “Simultaneous Removal of NO and SO2 by Absorption into Aqueous, Mixed Solutions”, AIChE J., Vol. 34, p.1215-1220, 1988.
9、張慶璋,”溫度效應對一氧化氮在銅/碳煙觸媒上還原反應行為之探討”, 國立中山大學化學研究所碩士論文,1996。
10、A. Corma, V. Fornes, E. Palomares, “Selective catalytic reduction of NOx on Cu-beta zeolites”, Applied Catalysis B:Environmental, Vol.11, p.233-243, 1997.
11、Hsisheng Teng, Yung-Fu Hsu and Ying-Tsung Tu, “Reduction of NO with NH3 over carbon catalysts - the influence of carbon surface structures and the global kinetics”, Applied Catalysis B:Environmental, Vol.20, p.145-154, 1999.
12、Daniela Pietrogiacomi, Diana Sannino, Simonetta Tuti, Paolo Ciambelli, Valerio Indovina, Manlio Occhiuzzi and Franco Pepe, “The catalytic activity of CuOx/ZrO2for the abatement of NO with propene or ammonia in the presence of O2”, Applied Catalysis B:Environmental , Vol.21, p.141-150, 1999.
13、A.M. Pisanu, C.E. Gigola, “NO decomposition and NO reduction by CO over Pd/γ-Al2O3”, Applied Catalysis B:Environmental , Vol.20, p.179-189, 1999.
14、Barnes, J.M., Apel, W.A.,and Barrett, K.B., ”Romoval of Nitrogen Oxides from Gas Streams Using Biofiltration”, Journal of Hazardous Materials, Vol.41, p.315-326, 1995.
15、蘇佳慶,”以生物滴濾塔處理排氣中一氧化氮之操作性能研究”,國立中山大學化學研究所碩士論文,1996。
16、林俊宏,”以生物滴濾塔處理排氣中一氧化氮之操作性能研究(II)”,國立中山大學化學研究所碩士論文,1997。
17、胡興中,”觸媒的原理與應用”,高立圖書有限公司,1991。
18、Gangwal S.K.,”Kinetics and Selectivity of Deep Catalytic Oxidation of n-Hexane and Benzene”, Applied Catalysis, Vol.36, p231-247, 1998.
19、李學賢,”以觸媒氧化含氯碳氫化合物之研究”, 國立中山大學環境工程研究所碩士論文,1994。
20、A. K. Tripathi, V. S. Kamble, and N. M. Gupta, “Microcalorimetry, Adsorption, and Reaction Studies of CO, O2, and CO+O2over Au/Fe2O3, and Polycrystalline Gold Catalysts”, Journal of Catalysis,Vol.187, p.332-342, 1999.
21、Christian Rottlander, Renato Andorf, Carsten Plog, Bernd Krutzsch and Manfred Baerns, “Selective NO reduction by propane and propene over a Pt/ZSM-5 catalyst: a transient study of the reaction mechanism”, Applied Catalysis B:Environmental, Vol.11, p.49-63, 1996.
22、R. Burch, “Low NOx options in catalytic combustion and emission control”, Catalysis Today, 35, p.27-36 , 1997.
23、Masakazu Iwamoto, Tetsu Zengyo, Angel M. Hernandez, Hirotaka Araki, “Intermediate addition of reductant between an oxidation and a reduction catalyst for highly selective reduction of NO in excess oxygen”, Applied Catalysis B:Environmental, Vol.17, p.259-266, 1998.
24、行業污染特性手冊第四冊化工類一,行政院環保署空氣品質保護與噪音管制處,1996年。
25、Heck, R.M. and R.J. Farrauto, “Catalytic Air Pollution Control--Commercial Technology”, Van Nostrand Reinhold , New York , U.S.A. , 1995.
26、盧裕倉,”以觸媒氧化法處理含揮發性有機物煙道氣之研究”,國立中山大學環境工程研究所碩士論文,1999。
27、林建宏,”銅觸媒活性中心之研究”, 國立中山大學化學研究所碩士論文,1991。
28、F. Boccuzzi, A. Chiorino, M. Gargano, and N. Ravasio, “Preparation, Characterization, and Activity of Cu/TiO2 Catalysts“, Journal of catalysis, Vol.165, p.140-149, 1997.
29、Ken-ichi Shimizu, Hajime Maeshima, Atsushi Satsuma, Tadashi Hattori, “Transition metal-aluminate catalysts for NO reduction by C3H6”, Applied Catalysis B:Environmental, Vol.18, p.163-170, 1998.
30、Zhenping Zhu, Zhenyu Liu, Shoujun Liu, Hongxian Niu, Tiandon Hu, “NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures”, Applied Catalysis B:Environmental, Vol.26, p.25-35, 2000.
31、Shikada, T, K. Fujimoto, T. Kunugi, H. Tominaga, S. Kanekoand Y. Kubo, “Reduction of Nitric Oxide with Vanadium Oxide Catalysts Supported on Homogeneously Precipitated Silica-Titania”, Ind. Eng. Chem. Prod. Res, Vol.20 ,p.91-95 ,1981.
32、李允賢,”V2O5/TiO2/SiO2觸媒作為氮氧化物排放之控制”,國立台灣工業技術學院工程技術研究所化學工程技術學程碩士學位論文,1992。
33、Matsuda, S. and A. Kato, ”Titanium Oxide Based Catalyst-A Review”, Applied Catalysis, Vol.8, p.149-165, 1983.
34、James J. Spivey, “Complete Catalytic Oxidation of Volatile Organics”, Industrial Engineering Chemical Research, Vol.26, No.11, p.2165-2180, 1987.
35、Vincenzo Tufano and maria Turco, “Konetic Model of Nitric Oxide Reduction over a High-surface Area V2O5-TiO2 Catalyst”, Applied Catalysis B:Environment, Vol.2, p.9-26, 1993.
36、陳全祿,”以鉑觸媒焚化處理揮發性有機物反應動力之研究”, 國立中山大學環境工程研究所碩士論文,1993。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code