Responsive image
博碩士論文 etd-0731100-155932 詳細資訊
Title page for etd-0731100-155932
論文名稱
Title
以改質之TiO2光觸媒探討四率乙烯分解率及礦化率之影響
The Study on the Conversion and Mineralization of PCE by Modified Photocatalyst(TiO2)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
323
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-27
繳交日期
Date of Submission
2000-07-31
關鍵字
Keywords
二氧化鈦、四氯乙烯、觸媒改質、光催化
TiO2, Modified, PCE, photocatalysis
統計
Statistics
本論文已被瀏覽 5793 次,被下載 3446
The thesis/dissertation has been browsed 5793 times, has been downloaded 3446 times.
中文摘要
摘 要

本研究旨在探討二氧化鈦(TiO2)光觸媒之改質,及其在紫外光/二氧化鈦(UV/TiO2)異相光催化分解(heterogeneous photocatalysis)四氯乙烯(perchloroethylene;PCE)之產物分佈,期能提高四氯乙烯之轉化率及礦化率,並進一步探討其可能之反應路徑。本研究所測試之改質光觸媒包括Ag/TiO2、Au/TiO2、Pt/TiO2、WO3/TiO2及AC/TiO2等5種,其添加比例除活性碳(activied carbon;AC)為TiO2光觸媒含量之10wt﹪外,其餘添加物之添加比例均為TiO2光觸媒之0.5wt%。本實驗測試之操作參數包括相對濕度(R.H.=0~60.0﹪)、氧氣濃度(0~21.0﹪)及停留時間(0.38~0.89秒)。

本研究係將披覆改質之Degussa P-25 anatase TiO2的玻璃珠填充在Pyrex玻璃管中,並以四支10W的近紫外燈管做為光催化反應之光源。研究結果顯示,在測試之反應時間內,四氯乙烯無法直接經由365 nm之近紫外光分解,而必需經由異相光催化反應才能被快速分解,且於光活性測試時亦未發現改質觸媒有毒化之現象。在添加改質光觸媒方面,以WO3/TiO2及AC/TiO2之轉化率及礦化率最佳,Ag/TiO2與未改質之TiO2光觸媒並無顯著差異,而Au/TiO2及Pt/TiO2則較差。研究結果顯示PCE轉化率最高可達99.5%,適度的氧氣有助於PCE的分解,但過多則無顯著的助益。此外,增加反應停留時間對PCE之轉化率有明顯的幫助;而相對濕度的存在對PCE之轉化率則會有顯著的抑制作用。

本研究發現PCE光催化分解之最終產物包括CHCl3、CCl4、C2HCl5、C2Cl6、COCl2、CCl3CClO、Cl2、HCl、CO及CO2等。在高氧氣濃度且沒有水份存在時,主要含Cl產物為Cl2;在高氧氣濃度且有水份存在時,主要含Cl產物為HCl;而在高氧氣濃度且不論有無水份存在,則主要含C產物均為CO2。



Abstract
ABSTRACT
The purpose of this research was to investigate the modified photocatalyst(TiO2) from the heterogeneous photocatalysis of perchloroethylene(PCE) products distribution by different operating conditions using near UV/TiO2 hope that could enhance the PCE’s conversion and mineralization rate and explore the reaction pathways.The modified photocatalyst of this research was completed with Ag/TiO2、Au/TiO2、Pt/TiO2、WO3/TiO2 and AC/TiO2. The added species except activied carbon was 10 % weight of photocatalyst(TiO2) others the noble metal (sillver、gold and platinum) and tungsten oxide(WO3) were 0.5 % weight of TiO2. Then the experiments were conducted by varying relative humidity(R.H.=0~60 %), oxygen concentration(0~21 %), and retention time(0.38~0.89 sec).

Glass beds coated with modified Degussa P-25 anatase TiO2 were filled in a Pyrex glass reactor. TiO2 was illuminated by four 10 watts ultraviolet(UV) lamps. Results from QA/QC experiments indicated that PCE could not be photodegradated by near UV of wavelength 365 nm. However, It can be decomposed quickly through heterogeneous photocatalysis. And it also find that no modified photocatalyst would be envenomed in photoactivied continuance test. The best PCE conversion and mineralization rate of modified photocatalyst were WO3/TiO2 and AC/TiO2. The modified photocatalyst Ag/TiO2 were the same as TiO2 but Au/TiO2 and Pt/TiO2 were worse to TiO2. The highest converstion rate of PCE could top to 99.5 %; The experiment showed that PCE was decomposed as oxygen concentration and retention time increased. But a higher concentration of oxygen was not efficient on the increase of PCE conversion. The conversion ratio of PCE could be inhibited at higher relative humidities.

The end products observed from UV/TiO2 heterogeneous photocatalytic reactions included CHCl3, CCl4, C2HCl5, C2Cl6, COCl2, CCl3CClO, Cl2, HCl, CO, and CO2. The major chlorinated compound was Cl2 when the photocatalytic reactions proceed at higher oxygen concentration and less humid conditions. As water vapor existed, the major chlorinated compound became HCl. The major product was CO2 during the entire experimental process of heterogeneous photocatalytic reactions.

目次 Table of Contents
目 錄
摘要………………………………………………………………... Ⅰ
目錄………………………………………………………………... III
表目錄……………………………………………………………... Ⅷ
圖目錄……………………………………………………………... ⅩⅡ
符號說明…………………………………………………………... ⅩⅩⅠ

第一章 諸論………………………………………………………. 1-1
1-1 研究緣起………………………………………………… 1-1
1-2 研究目的………………………………………………… 1-10

第二章 文獻回顧…………………………………………………. 2-1
2-1 含氯揮發性有機物之特性及影響……………………… 2-1
2-2 光催化反應原理………………………………………… 2-12
2-3 半導體之基本特性……………………………………… 2-20
2-3-1 n-型和p-型半導體………………………………… 2-22
2-3-2 半導體光催化劑之種類…………………………... 2-25
2-3-3 半導體之異相光催化原理與機制………………... 2-30
2-4 光催化觸媒的製備……………………………………… 2-33
2-5 光催化反應器…………………………………………… 2-35
2-6 影響UV/TiO2光催化反應之操作參數…………………. 2-37
2-6-1 濕度的影響………………………………………... 2-37
2-6-2 光強度的影響……………………………………... 2-38
2-6-3 氧濃度的影響……………………………………... 2-39
2-6-4 溫度的影響………………………………………... 2-40
2-7 半導體觸媒的改質……………………………………… 2-41
2-7-1 半導體改質觸媒的製備…………………………... 2-50
2-7-2強金屬載體作用力………………………………… 2-52
2-8 反應途徑的推估………………………………………… 2-55

第三章 研究方法…………………………………………………. 3-1
3-1 實驗設備…………………………………………………. 3-3
3-1-1 VOCs產生系統……………………………………. 3-3
3-1-2光催化反應系統…………………………………… 3-5
3-1-3分析系統…………………………………………… 3-5
3-1-4觸媒還原系統……………………………………… 3-9
3-2 實驗材料及製備方法……………………………………. 3-9
3-2-1實驗材料…………………………………………… 3-9
3-2-2製備方法…………………………………………… 3-13
3-2-2-1 TiO2的製備方法…………………………... 3-14
3-2-2-2 Ag/TiO2觸媒製備方式……………………. 3-14
3-2-2-3 Au/TiO2觸媒製備方式……………………. 3-15
3-2-2-4 Pt/TiO2觸媒製備方式…………………….. 3-16
3-2-2-5 AC/TiO2觸媒製備方式…………………… 3-16
3-2-2-6 WO3/TiO2觸媒製備方式………………….. 3-18
3-3 實驗方法…………………………………………………. 3-18
3-3-1操作參數及範圍……………………………………. 3-18
3-3-2系統特性測試…………………. ………………….. 3-20
3-3-2-1載體吸附和均相光催化反應測試………... 3-20
3-3-2-2不照光吸附反應測試……………………... 3-20
3-3-2-3異相光催化反應測試……………………... 3-20
3-3-2-4光活性持續性測試………………………... 3-21
3-3-3光催化反應實驗……………………………………. 3-21
3-3-4停留時間之計算……………………………………. 3-22
3-4 改質觸媒之物理特性分析………………………………. 3-22
3-5 產物分析方法……………………………………………. 3-23

第四章 結果與討論………………………………………………. 4-1
4-1 光觸媒基本特性分析…………………………………… 4-1
4-1-1外表與顏色觀察結果………………………………. 4-1
4-1-2 X光繞射儀(XRD)分析結果……………………. 4-2
4-1-3掃描式電子顯微鏡(SEM)與能譜儀(EDS)分析結果……………………………………………...
4-3
4-1-4紫外光可見光譜儀(UV/Vis Spectroscopy)分析結果……………………………………………….
4-4
4-1-5微孔隙分析儀(Micropore Analyzer)分析結果… 4-5
4-2 實驗系統特性測試結果………………………………… 4-8
4-2-1載體吸附測試結果…………………………………. 4-9
4-2-2均相光反應測試結果………………………………. 4-9
4-2-3不照光實驗測試結果………………………………. 4-11
4-2-4異相光催化反應實驗測試結果……………………. 4-13
4-2-5光活性持續性測試結果……………………………. 4-15
4-3 光催化反應產物分析結果……………………………… 4-17
4-4 操作條件對改質光觸媒分解PCE效率之探討………... 4-19
4-4-1氧氣濃度對改質光觸媒分解PCE效率之探討……. 4-19
4-4-2停留時間對改質光觸媒分解PCE效率之探討……. 4-24
4-4-3相對濕度對改質光觸媒分解PCE效率之探討……. 4-28
4-5 操作條件對改質光觸媒分解PCE產物及產率之影響... 4-32
4-5-1氧氣濃度對改質光觸媒分解PCE產物及產率之影響………………………………………………...
4-33
4-5-2停留時間對改質光觸媒分解PCE產物及產率之影響………………………………………………...
4-71
4-5-3相對濕度對改質光觸媒分解PCE產物及產率之影響………………………………………………...
4-94
4-6 反應途徑之探討………………………………………… 4-129
4-6-1不同氧氣濃度下光催化反應路徑推估……………. 4-129
4-6-2低相對濕度下光催化反應路徑推估………………. 4-134

第五章 結論與建議………………………………………………. 5-1
5-1 結論……………………………………………………… 5-1
5-2建議………………………………………………………. 5-4

參考文獻…………………………………………………………... 6-1
附錄A PCE之特性……………………………………………….. A-1
附錄B不同觸媒之製備方法優缺點比較………………………... B-1
附錄C TiO2(anatase)XRD之JCPDS card……………………. C-1
附錄D GC/ECD、GC/FID層析圖例…………………………….. D-1





表目錄
表1-1 常用有機溶劑可能導致之危害………………………... 1-2
表1-2 含氯有機溶劑之致癌潛在性一覽表…………………... 1-5
表1-3 美國環境保護署129種優先管制污染物清單………… 1-6
表1-4 國內列管揮發性有機污染物排序清單………………... 1-7
表1-5 各種揮發性有機污染物處理方法之比較……………... 1-9
表1-6 可用光催化法處理之VOCs種類……………………… 1-11
表2-1 含氯有機溶劑之主要物性一覽表……………………... 2-2
表2-2 含氯有機溶劑之主要用途……………………………... 2-3
表2-3 含氯有機溶劑之空氣暴露容許標準…………………... 2-4
表2-4 含氯有機溶劑危害人體健康之器官系統……………... 2-5
表2-5 大氣中常見揮發性有機化合物之種類………………... 2-7
表2-6 室內空氣中典型的有機性溶劑………………………... 2-8
表2-7 揮發性有機物排放標準………………………………... 2-9
表2-8 室內常見之35種揮發性有機物種類與濃度…………. 2-10
表2-9 常見之室內揮發性有機物及其職業暴露限制值……... 2-11
表2-10 化學鍵的斷裂能量……………………………………... 2-13
表2-11 金屬氧化物半導體之分類……………………………... 2-23
表2-12 半導體光觸媒之能量障壁值與激發所須之紫外光波長………………………………………………………...
2-26
表2-13 不同溫度下以烴氧化物製備TiO2的特性……………... 2-29
表2-14 TiO2鍛燒溫度與孔隙度和比表面積之關係…………... 2-29
表2-15 光觸媒改質文獻整理…………………………………... 2-42
表2-16 ⅧB金屬觸媒對乙烯(ethane)氫解反應的催化活性…... 2-53
表3-1 球狀活性碳之基本物理性質…………………………... 3-17
表3-2 觸媒製備之配比………………………………………... 3-19
表3-3 操作參數及範圍…………………………………... 3-18
表3-4 GC/ECD分析含氯產物之滯留時間…………………… 3-24
表3-5 CO2之滯留時間………………………………………… 3-25
表3-6 氯化氫分析相關品管數據……………………………... 3-27
表3-7 各分析項目之減量線…………………………………... 3-32
表4-1 添加改質改質光觸媒之物理性質比較表……………... 4-6
表4-2 各改質觸媒異相光催化結果…………………………... 4-14
表4-3 以UV/TiO2程序處理氣相空氣污染物相關研究文獻整理……………………………………………………...
4-18
表4-4 不同觸媒對於光分解PCE產物之比較……………….. 4-70
表4-5 不同觸媒對於光分解PCE產物之比較……………….. 4-93
表4-6 不同觸媒對於光分解PCE產物之比較……………….. 4-128
表A-1 PCE之特性……………………………………………... A-1
表A-2 TiO2的基本性質及應用………………………………... A-2
表A-3 TiO2之基本物理化學特性…………………………….. A-3
表A-4 P-25 TiO2之物理化學特性……………………………. A-3
表B-1 不同觸媒製備方法之優點比較………………………... B-1
表B-2 泥漿反應器之優缺點…………………………………... B-2
表B-3 薄膜反應器之優缺點…………………………………... B-2
表B-4 填充床反應器之優缺點……………………………….. B-3
表B-5 光纖反應器之優點……………………………………... B-3
表B-6 流體化床反應器之優缺點……………………………... B-4
表B-7 UV/TiO2光催化反應中光強度的影響………………… B-5
表B-8 UV/TiO2光催化反應中濕度的影響…………………… B-6
表B-9 UV/TiO2光催化反應中溫度的影響…………………… B-7
表B-10 UV/TiO2光催化反應中氧濃度的影響………………… B-7
表B-11 觸媒製造程序之分類…………………………………... B-8
表C-1 TiO2(anatase)XRD 之JCPDS card………………… C-1
表C-2 TiO2(rutile)XRD 之JCPDS card…………………….. C-1
表C-3 Ag XRD 之JCPDS card………………………………... C-2
表C-4 Au XRD 之JCPDS card………………………………. C-2
表C-5 Pt XRD 之JCPDS card………………………………… C-3
表C-6 WO3 XRD 之JCPDS card……………………………… C-3
表D-1 不同觸媒在不同氧氣濃度下之光催化反應結果一覽表………………………………………………………..
D-9
表D-2 不同觸媒在不同相對濕度下之光催化反應結果一覽表………………………………………………………..
D-11
表D-3 不同觸媒在不同停留時間下之光催化反應結果一覽表………………………………………………………...
D-12














圖目錄
圖1-1 各種處理VOCs方法之年成本比較………………….. 1-12
圖2-1 半導體受光激發後之電子-電洞生成及介面反應示意圖 2-15
圖2-2 三種固體之能帶圖………………………………………. 2-21
圖2-3 電子與電洞能量之關係圖………………………………. 2-21
圖2-4 電子轉移圖………………………………………………. 2-32
圖3-1 本研究實驗流程圖………………………………………. 3-2
圖3-2 反應氣體鋼瓶配置圖……………………………………. 3-4
圖3-3 光催化反應示意圖………………………………………. 3-6
圖3-4 反應系統流程圖…………………………………………. 3-7
圖3-5 還原反應設備圖…………………………………………. 3-10
圖4-1 載體吸附及均相光解反應測試結果……………………. 4-10
圖4-2 不照光實驗PCE被各觸媒吸附現象…………………… 4-12
圖4-3 各改質觸媒光活性持續性測試結果……………………. 4-16
圖4-4 各觸媒隨氧氣濃度分解PCE之效率比較……………… 4-20
圖4-5 各觸媒隨停留時間分解P CE之效率比較……………… 4-25
圖4-6 各觸媒隨相對濕度分解PCE之效率比較……………… 4-30
圖4-7 TiO2光分解PCE含氯產物隨氧氣濃度變化趨勢圖…… 4-33
圖4-8 TiO2光分解PCE中含Cl質量百分比隨氧氣濃度變化趨勢圖…………………………………………………….
4-38
圖4-9 TiO2光分解PCE產物中CO及CO2隨氧氣濃度變化趨勢圖…………………………………………………….
4-39
圖4-10 TiO2光分解PCE中含C質量百分比隨氧氣濃度變化趨勢圖…………………………………………………….
4-41
圖4-11 WO3/TiO2光分解PCE含氯產物隨氧氣濃度變化趨勢圖………………………………………………………….
4-42
圖4-12 WO3/TiO2光分解PCE產物中CO及CO2隨氧氣濃度變化趨勢圖……………………………………………….
4-44
圖4-13 WO3/TiO2光分解PCE中含C質量百分比隨氧氣濃度變化趨勢圖……………………………………………….
4-46
圖4-14 WO3/TiO2光分解PCE中含Cl質量百分比隨氧氣濃度變化趨勢圖……………………………………………….
4-47
圖4-15 AC/TiO2光分解PCE含氯產物隨氧氣濃度變化趨勢圖 4-48
圖4-16 AC/TiO2光分解PCE產物中CO及CO2隨氧氣濃度變化趨勢圖………………………………………………….
4-49
圖4-17 AC/TiO2光分解PCE中含C質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-52
圖4-18 AC/TiO2光分解PCE中含Cl質量百分比隨氧氣濃度變化趨勢圖……………………………………………….
4-53
圖4-19 Ag/TiO2光分解PCE含氯產物隨氧氣濃度變化趨勢圖 4-54
圖4-20 Ag/TiO2光分解PCE產物中CO及CO2隨氧氣濃度變化趨勢圖………………………………………………….
4-55
圖4-21 Ag/TiO2光分解PCE中含C質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-57
圖4-22 Ag/TiO2光分解PCE中含Cl質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-58
圖4-23 Au/TiO2光分解PCE含氯產物隨氧氣濃度變化趨勢圖.. 4-59
圖4-24 Pt/TiO2光分解PCE含氯產物隨氧氣濃度變化趨勢圖.. 4-60
圖4-25 Au/TiO2光分解PCE產物中CO及CO2隨氧氣濃度變化趨勢圖………………………………………………….
4-62
圖4-26 Pt/TiO2光分解PCE產物中CO及CO2隨氧氣濃度變化趨勢圖………………………………………………….
4-63
圖4-27 Pt/TiO2光分解PCE中含C質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-64
圖4-28 Pt/TiO2光分解PCE中含Cl質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-65
圖4-29 Au/TiO2光分解PCE中含C質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-66
圖4-30 Au/TiO2光分解PCE中含Cl質量百分比隨氧氣濃度變化趨勢圖………………………………………………….
4-67
圖4-31 各觸媒光分解PCE產物之產率隨氧氣濃度變化趨勢圖 4-69
圖4-32 TiO2光分解PCE含氯產物隨停留時間變化趨勢圖…… 4-72
圖4-33 TiO2光分解PCE中含Cl質量百分比隨停留時間變化趨勢圖…………………………………………………….
4-74
圖4-34 TiO2光分解PCE產物中CO及CO2隨停留時間變化趨勢圖…………………………………………………….
4-75
圖4-35 TiO2光分解PCE中含C質量百分比隨停留時間變化趨勢圖…………………………………………………….
4-77
圖4-36 AC/TiO2光分解PCE含氯產物隨停留時間變化趨勢圖 4-78
圖4-37 AC/TiO2光分解PCE產物中CO及CO2隨停留時間變化趨勢圖………………………………………………….
4-80
圖4-38 AC/TiO2光分解PCE中含C質量百分比隨停留時間變化趨勢圖………………………………………………….
4-81
圖4-39 AC/TiO2光分解PCE中含Cl質量百分比隨停留時間變化趨勢圖……………………………………………….
4-82
圖4-40 WO3/TiO2光分解PCE含氯產物隨停留時間變化趨勢圖………………………………………………………….
4-83
圖4-41 WO3/TiO2光分解PCE產物中CO及CO2隨停留時間變化趨勢圖……………………………………………….
4-84
圖4-43 WO3/TiO2光分解PCE中含C質量百分比隨停留時間變化趨勢圖……………………………………………….
4-86
圖4-43 WO3/TiO2光分解PCE中含Cl質量百分比隨停留時間變化趨勢圖……………………………………………….
4-87
圖4-44 Ag/TiO2光分解PCE含氯產物隨停留時間變化趨勢圖. 4-88
圖4-45 Ag/TiO2光分解PCE產物中CO及CO2隨停留時間變化趨勢圖………………………………………………….
4-89
圖4-46 Ag/TiO2光分解PCE中含C質量百分比隨停留時間變化趨勢圖…………………………………………………. 4-90
圖4-47 Ag/TiO2光分解PCE中含Cl質量百分比隨停留時間變化趨勢圖………………………………………………….
4-91
圖4-48 各觸媒光分解PCE產物之產率隨停留時間變化趨勢圖 4-92
圖4-49 TiO2光分解PCE產物中含氯產物隨濕度變化趨勢圖… 4-95
圖4-50 TiO2光分解PCE中含Cl質量百分比隨濕度變化趨勢圖………………………………………………………….
4-98
圖4-51 TiO2光分解PCE產物中CO及CO2隨濕度變化趨勢圖………………………………………………………….
4-99
圖4-52 TiO2光分解PCE產物中含C質量百分比隨濕度變化趨勢圖…………………………………………………….
4-101
圖4-53 AC/TiO2光分解PCE產物中含氯產物隨濕度變化趨勢圖………………………………………………………….
4-102
圖4-54 AC/TiO2光分解PCE中含Cl質量百分比隨濕度變化趨勢圖…………………………………………………….
4-104
圖4-55 AC/TiO2光分解PCE產物中CO及CO2隨濕度變化趨勢圖……………………………………………………….
4-105
圖4-56 AC/TiO2光分解PCE產物中含C質量百分比隨濕度變化趨勢圖………………………………………………….
4-106
圖4-57 WO3/TiO2光分解PCE產物中含氯產物隨濕度變化趨勢圖……………………………………………………….
4-108
圖4-58 WO3/TiO2光分解PCE產物中CO及CO2隨濕度變化趨勢圖…………………………………………………….
4-109
圖4-59 WO3/TiO2光分解PCE中含Cl質量百分比隨濕度變化趨勢圖…………………………………………………….
4-110
圖4-60 WO3/TiO2光分解PCE產物中含C質量百分比隨濕度變化趨勢圖………………………………………………
4-111
圖4-61 Ag/TiO2光分解PCE產物中含氯產物隨濕度變化趨勢圖………………………………………………………….
4-112
圖4-62 Ag/TiO2光分解PCE產物中CO及CO2隨濕度變化趨勢圖……………………………………………………….
4-113
圖4-63 Ag/TiO2光分解PCE中含Cl質量百分比隨濕度變化趨勢圖……………………………………………………….
4-115
圖4-64 Ag/TiO2光分解PCE產物中含C質量百分比隨濕度變化趨勢圖………………………………………………….
4-116
圖4-65 Au/TiO2光分解PCE產物中含氯產物隨濕度變化趨勢圖………………………………………………………….
4-117
圖4-66 Pt/TiO2光分解PCE產物中含氯產物隨濕度變化趨勢圖………………………………………………………….
4-118
圖4-67 Au/TiO2光分解PCE產物中CO及CO2隨濕度變化趨勢圖……………………………………………………….
4-120
圖4-68 Pt/TiO2光分解PCE產物中CO及CO2隨濕度變化趨勢圖……………………………………………………….
4-121
圖4-69 Au/TiO2光分解PCE中含Cl質量百分比隨濕度變化趨勢圖……………………………………………………….
4-122
圖4-70 Pt/TiO2光分解PCE中含Cl質量百分比隨濕度變化趨勢圖……………………………………………………….
4-123
圖4-71 Au/TiO2光分解PCE中含C質量百分比隨濕度變化趨勢圖……………………………………………………….
4-124
圖4-72 Pt/TiO2光分解PCE中含C質量百分比隨濕度變化趨勢圖……………………………………………………….
4-125
圖4-73 各觸媒光分解PCE產物之產率隨相對濕度變化趨勢圖 4-126
圖4-74 PCE光催化之可能反應路徑……………………………. 4-130
圖4-75 PCE光催化之可能反應路徑……………………………. 4-131
圖4-76 PCE光催化之可能反應路徑……………………………. 4-132
圖B-1 各觸媒之能階圖…………………………………………. B-9
圖C-1 TiO2之XRD圖譜………………………………………… C-4
圖C-2 Ag/TiO2之XRD圖譜……………………………………. C-4
圖C-3 Pt/TiO2之XRD圖譜……………………………………. C-5
圖C-4 Au/TiO2之XRD圖譜……………………………………. C-5
圖C-5 WO3/TiO2之XRD圖譜………………………………….. C-6
圖C-6 AC/TiO2之XRD圖譜……………………………………. C-6
圖C-7 TiO2 SEM 照片………………………………………….. C-7
圖C-8 AC/TiO2 SEM 照片……………………………………… C-7
圖C-9 WO3/TiO2SEM 照片…………………………………….. C-7
圖C-10 Pt/TiO2 SEM 照片……………………………………….. C-7
圖C-11 Ag/TiO2 SEM 照片……………………………………… C-7
圖C-12 Au/ TiO2 SEM 照片……………………………………... C-7
圖C-13 EDS之TiO2訊號譜圖……………………………………. C-8
圖C-14 EDS之AC/TiO2訊號譜圖……………………………… C-8
圖C-15 EDS之WO3TiO2訊號譜圖……………………………… C-8
圖C-16 EDS之Pt/TiO2訊號譜圖………………………………… C-9
圖C-17 EDS之Au/TiO2訊號譜圖……………………………… C-9
圖C-18 EDS之Ag/TiO2訊號譜圖……………………………… C-9
圖C-19 添加改質TiO2觸媒其光吸收度變化趨勢圖…………… C-10
圖D-1 GC/ECD層析譜圖……………………………………….. D-1
圖D-2 GC/FID附有甲烷轉化器層析譜圖……………………... D-1
圖D-3 N2質量流量計之流量校正曲線圖………………………. D-2
圖D-4 O2 質量流量計之流量校正曲線圖……………………… D-2
圖D-5 VOC質量流量計之流量校正曲線圖…………………… D-2
圖D-6 C2Cl4之檢量線圖………………………………………… D-3
圖D-7 C2Cl6之檢量線圖………………………………………… D-4
圖D-8 COCl2之檢量線圖………………………………………. D-4
圖D-9 C2HCl5之檢量線圖……………………………………… D-5
圖D-10 HCl之檢量線圖………………………………………….. D-5
圖D-11 CCl4之檢量線圖…………………………………………. D-6
圖D-12 CHCl3之檢量線圖……………………………………….. D-7
圖D-13 氯氣之檢量線圖…………………………………………. D-8
圖D-14 CO2之檢量線圖………………………………………….. D-8
圖D-15 CO之檢量線圖………………………………………….. D-8













符號說明

k:反應速率常數
A:頻率因子( frequency factor)
E:反應活化能( activation energy)
T:絕對溫度(。K)
t:反應停留時間(sec)
V:反應器中填充披覆TiO2玻璃珠之體積(cm3)
V
參考文獻 References
參考文獻

1. 劉國棟,“VOC管制趨勢展望”,工業污染防治,48期,pp.15-31,1993。
2. 王仁澤譯,“毒物學概論”,高立圖書有限公司,pp.6-13,1997。
3. 劉宗榮,“毒性化學物質與危害特性”,甲級毒性專責人員教材,pp.7-56,民國八十八年3月。
4. 翁祖輝,“環境毒物概論”,甲級毒性專責人員教材,pp.9-51,民國八十八年3月。
5. Kieth,L.H.,EPA’s Priority Polltants:“Where They Come From-Where There’re Going? A.I.Ch.E.Symp.Ser.,Water”, Vol.77, No.209, p.249, 1980.
6. 工業局,“石化工業因應揮發性有機污染物管制規範之對策研究”,經濟部工業局專案研究計劃,1994。
7. Jacoby, A.W., Blake, D.M., Fennell, J.A., Boulter, J.E., and Vargo, L.M., “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air”, The 88th Air & Waste Management Assoication, 46︰pp.891-898, 1996.
8. Lyons, C.E ., Turchi, C., and Gratson, D.,“Solving Widesprea Low-Concentration VOC Air Pollution Problems:Gas-Phase Photocatalytic Oxidation Answers the Needs of Many Small Businesses”, The 88th Air & Waste Management Assoication. Annual Meeting, June, 1995.
9. Chemical Safety Data Sheet-Vol. 1:Solvent, Royal Society of Chemistry, London, 1989.
10. 蔡文田,“含氯有機溶劑之毒性及新陳代謝機制”,工業污染防治,43期,pp.175-187, 1992。
11. 行政院環保署,“毒性化學物質管理法規”, 行政院環保署環境保護人員訓練所編印,民國八十八年四月。
12. 行政院勞工委員會,“勞工作業環境空氣中有害物容許濃度標準”,民國八十八年七月。
13. Aggazzotti,G., Fantuzzi, G., Gighi, E., Predieri, G., Gobba, F.M., Paltrinieri, M., and Cavalleri, A., “Occupational and Environmental Exposure to Perchloroethylene (PCE) in Dry Cleaners and Their Family Members”. Arch. Environ. Health, 49:pp.487-493, 1994.
14. 楊慶熙,“VOC現行法規與管制趨勢”,VOC管制趨勢與處理技術講習會,中技社空氣污染防制服務團,1995。
15. Benitez, J., “Process Engineering and Design for Air Pollution Control”, PTR Prentice-Hall Inc., New Jersey, pp. 466, 1993.
16. Calabrese, E.J. and Kenyon, E.M., “Air Toxic Risk Assessment and Management”, pp.622, 1991.
17. 張慶源,蔡文田,“含氯揮發性有機物之活性碳吸附與催化燃燒處理研究”,行政院國家科學委員會專題研究計劃成果報告,1992。
18. “空氣污染防制法規”, 行政院環境保護署, 1994.
19. Shah, J.J. and Singh, H.B., “Distribution of Volatile Organic Chemicals in Outdoor and Indoor Air”, ES&T, 22︰pp.1381-1388, 1988.
20. Legan, R.W., “Ultraviolet Light Takes on CPI Roles”, Chemical Engineering, January, pp.95, 1982.
21. 顧洋,“以紫外線/臭氧程序處理氣相揮發性有機污染物反應行為之研究”,行政院國家科學委員會專題研究計劃成果報告(1997)。
22. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev., 20︰pp.69-95, 1995.
23. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., “Environmental Applications of SemiconductorPhotocatalysis”, Chem. Rev., 95:pp.69-96, 1995.
24. Gray, K.A., Stafford, U., Dieckmann, M.S., and Kamat, P., “Mechanistic Studies in TiO2 System: Photocatalytic Degradation of Chloro- and Nitrophenols”, Photocatalytic Purification and Treatment of Water and Air., pp.815-820, 1993.
25. Ku, Young, Leu, Ren-Ming, and Lee, Kuen-Chyr, “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process”, Journal of the Chinese Instiute of Environment Engineering., 6(1)︰pp.43-49, 1996.
26. Huston, P.L. and Pignatello, J.J., “Reduction of Perchloroalkanes by Ferrioxylate Radical Preceding Mineralization by the Photo-Fenton Reaction”, ES&T, 30︰pp.3457-3463, 1996.
27. Leung, S.W., Watts, R.J., and Miller, G.C., “Degradation of Perchloroethylene by Fenton‘s Reagent:Speciation and Pathway”, J. Environ. Qual. 21︰pp.377-381, 1992.
28. Martin, S.T., Herrmann, H., Choi, W., and Hoffmann, M.R., “Time-resolved Microwave Conductivity”, J. Chem. Soc. Faraday Trans. I., 90︰pp.3315-3322, 1994.
29. Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis”, Chem. Rev., 93︰pp.341-357, 1993.
30. Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces”, Chem. Rev., 93︰pp.267-300, 1993.
31. Okamoto, K.I., Yamamoto. Y., Hanaka, H., and Tanaka, M., “Hetergeneous Photocatalytic Decomposition of Phenol over TiO2 Powder”, Bull. Chem. Soc. Jpn., 58︰pp.2015-2022, 1985.
32. Liljestand, H.M. and Sattler, M.L., “Photocatalytic Oxidation Processes for In-Door Air Pollution”, The 89th Air & Waste Management Assoication. Annual Meeting, June, 1996.
33. Suzuko, Y.N., Fu, X., Anderson, M.A., and Hori, K., “Chlorinated By-product from the Photoassisted Catalytic Oxidation of Trichloroethylene and Trachloroethylene in the Gas Phase Using Porous TiO2 Pellets”, J. of Photochemistry and Photobiology., 97︰ pp.175-179, 1996.
34. Bolton. J., Ali, S.A., Buckley, J.A., Notarfonzo, R., and Cater, S., “Homogeneous Photodegradation of Pollutants in Air”, The 87 th Air and Waste Management Association. Annual Meeting, Cininnati, Ohio, June, 1994.
35. 胡振國譯,“半導體原件-物理與技術”,全華圖書公司,pp.2-13,1989。
36. 吳榮宗,“工業觸媒概論”,黎明書局,pp.72-85,1985。
37. Magrini, K., Larson, S., Rabogo, R., and Turchi, C., “Control of Gaseous Solvent Emissions Using Photocatalytic Oxidation”,The 89th Air & Waste Management Assoication. Annual Meeting, June, 1996.
38. Stumn, W., “Chemistry of the Solid-Water Interface, John Wiley and Sons, New York”, 1992.
39. Watanabe, T., Kitamura, A., Kojima, E., Nakayama, C., Hashimoto, K., and Fujishima, A., “Photocatalytic Activity of TiO2 Thin Film under Room Light”, The First International conference on TiO2 Photocatalytic Purification and Treamennt of Water and Air., canada., 1992.
40. Anderson, M.A., Aeltner W., Fu, X., and Tompkins, D., “Chamber Studies Comparing the Effectiveeness of Photocatalytic Degradtion and Activated Carbon for the Treatment of Indoor Air” Air & Waste Management Assoication. Annual Meeting, June, 1996.
41. Pratsinis, S.E., Bai, H., and Biswas, P., “Kinetics of Titanium(IV) Chloride Oxidation”, J. Am. Ceram. Soc., 73︰pp.2158-2162, 1990.
42. Nargiello, M. and Herz, T., “Physical-Chemiscal Characteristics of P-25 Making it Exteremely Suited as The Catalyst in Photodegradation of Organic Compounds”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, pp.801-807、820, 1993.
43. 吳炳佑,“TiO2光催化膜之製備與性質”,國立中央大學化學工程研究所博士論文,1996。
44. Kato, K., “Synyhesis of TiO2 Photocatalysts with High Activity by the Alkoxide Method”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F., Al- Ekabi, H., Eds., Elsevier: Amsterdam , pp.809-820, 1993.
45. Anderson, M.A., Yamazaki-Nishida, A., and Cervera-March, S., “Photodegradation of Trichloroethylene in the Gas Phase Using TiO2 Porpous Ceramic Membranes”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F., Al- Ekabi, H., Eds., Elsevier: Amsterdam, pp.405-420、820, 1993.
46. Murasawa, S. and Takaoka, Y., “Several Applications of TiO2 Photocatalyst for Water and Air Purification”, The First International Conference on Advanced Oxidation Technologies for Water and Air Remediation Abstracts, June, Canada, 1994.
47. Linsebigier, Amy L., Lu, Guangquan and Yates, John T. Jr., “Photocatalysis on TiO2 Surface:Principles, Mechanism, and Selected Results”,Chem. Rev., 95:pp735-758, 1995.
48. 李秉傑, 邱宏明, 王奕凱譯, “非均勻系催化原理與應用”, 渤海堂出版社, pp.37-130, 1992.
49. Hung, C.H. and Marinas, B.J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, ES&T, 31(2)︰pp.562-568, 1997.
50. 賴燕昭,“由溶液-凝膠法製備之鈦酸鉛陶瓷薄膜的結構成長”,國立台灣工業技術學院化學工程技術係研究所碩士論文,1997。
51. Sopyan, I.,Watanable, M., Murasawa, S., Hashimoto, K., and Fujishima, A., “A Film-Typl Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder:Photocatalytic Activity and Longterm Sability”, Journal of Electroanalytical Chemistry, 415:pp183-186, 1996.
52. Ibusuki, T. and Takeuchi, K., “Toluene Oxidation on U.V.-Irradiated Titanimn Dioxide with and without O2, NO2, or H2O at Ambient Temperature”, Atmospheric Environment, 20︰pp.1711, 1986.
53. Gratson, D.A., Nimos, M.R., and Wolfrum, E.J., “Photocatalytic Oxidation of Gas-Phase BTEX-Contaminated Waste Streams”,The 88th Air & Waste Management Assoication. Annual Meeting, June, 1995.
54. Ibusuki, T., Kutsuna S., Takeuchi., K., Shin-Kai, K., Sasamoto, T., and Miyamoto, M., “Removal of Low Concertration Air Pollutionts through Photoassisted Heterogeneous Catalysis”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, pp.375, 1993.
55. Peral, J. and Ollis, D. F., “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification : Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, J. Catal., 134︰pp.554-565, 1992.
56. Dibble, L.A. and Raupp, G.B., “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams”, ES&T, 26:pp.492-495, 1992.
57. Peill, N.J. and Hoffmann, M.R., “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor”, ES&T, pp.2806-2812, 1996.
58. Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated Air Toxics”, Appl. Sur. Sci., 72:pp.321, 1993.
59. Hung, C.H. and Marinas, B.J., “Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, ES&T, 31(5)︰pp.1440-1445, 1997.
60. 劉安治, “近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”, 國立中山大學環境工程研究所碩士論文, 1997.
61. 吳永俊, “近紫外光/二氧化鈦光催化分解三氯乙烯之研究”, 國立中山大學環境工程研究所碩士論文, 1996.
62. Larson, S.A. and Falconer, J.L., “Characterization of TiO2 Photocatalysts Used in Trichloroethene Oxidation”, Appl. Catal. B: Environ., 4:pp.325, 1994.
63. Jacoby, W.A., Nimlos, M.R., and Blake, D.M., “Products, Intermediates, Mass Balances, and Reaction Pathways for the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis”, ES&T, 28︰pp.1661-1668, 1994.
64. Peterson, M.W., Turner, J.A., and Nozik, A.J., “Mechanistic Studies of the Photocatalytic Behavior of TiO2 Particles in a Photoelectrochemical Slurry Cell and Relevance to Photodetoxification Reactions”, J. Phys. Chem., 95︰pp.221, 1991.
65. Jacoby, A.W., Blake, D.M., Noble, R.D., and Koval, C.A., “Kinetic of the Oxidation of Trichlorothylene in Air via Heterogeneous Photocatalysis”, J. Catal., 157︰pp.87-96, 1995.
66. Jardim, W.F., Aiberic, R.M., Takiyama, M.K., and Huang, C.P., “Gas-phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2”, The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
67. Wang, K.M. and Marinas, B.J. “Control of VOC Emissions from Air-Stripping Towers: Development of Gas-Phase Photocatalytic Process”, in Photocatalytic Purification and Treatment of Water and Air,Ollis, D. F., Al- Ekabi, H., Eds., Elsevier: Amsterdam, pp.733-737, 1993.
68. Fu, X., Clark, L.A., Zenlter, W.A., and Anderson, M.A., “Effects of Reaction Temperature and Water Vapor Content on The Heterogeneous Photocatalytic Oxidation of Ethylene”, Journal of Photochemistry and Photobiology., 97︰pp.181-186, 1996.
69. Lee, W., Gao Y-M., Dwight, K.and Word, A., “Photoassisted Gold Derosition of TiO2”, Mater. Res. Bull., 26:pp.1247-1254, 1991.
70. Gao Y-M., Dwight, K., Shen, H-S. .and Word, A., “Prearation and Photocatalytic Properties of TiO2 Film”, Mater. Res. Bull., 27: pp.1023-1030, 1992.
71. Rapp, J., Shen, H-S., Dwight, K.and Word, A., Chem.Mater., 5:pp.284-296, 1993.
72. Wang, C-M., Heller, A., Gerisher, H., “Palladium Catalysis of O2 Reduction by Electrons Accumulated on TiO2 Particles during Photoassisted Oxidation of Organic Compounds”, J. Am. Chem. Soc., 114:pp.5230-5234, 1992.
73. Albert, M., Gao Y-M., Dwight, K., and Word, A., “Photoassisted Gold Deposiition of TiO2 ”, Mater. Res. Bull., 27:pp.961-966, 1992.
74. Kondo, M.M., and Jardim, W.F., “Photodegration of Chloroform and Urea Using Ag-Loading Titanium Dioxide as Catalyst”, Wat.Res., Bull 25:pp823-827,1991.
75. Sclafani, A., Mozzanega, M.N.and Pichat, P., “Effect of Silver Deposits on Photocatalytic Activity of TiO2 Sample for the Dehydrogenation or Oxidation of 2-proponl ”, J. Photochem. Photobiol.A:Chem., 59:pp181-189,1991.
76. Nishimoto, S.I., Ohtani, B., Kajiwara, H., and Kagiva, J., “Photocatalytic Oxygen of Phenol and Chlorinated Deposition in Aqueous Solutions of Various Silevers Salts by Suspended Titaniuum Dioxide Powder”, J. Chem. Soc. Faraday Trans., 79:pp.2685-2700, 1983.
77. Aguado M.A., and .Anderson M.A., “Degradation of Formic Acid over Semiconducting Membranes Supported on Glass:Effects of Structure and Electronic Doping”, Solar Energy Mat. Solar Cell, 28:pp.345-356, 1993.
78. Xu, Q. and Anderson, M.A., “Physical-Chemistry Properties of TiO2 Membrances Controlled by Sol-Gel Processing”, Mater. Res. Soc. Symp. Process., 1989.
79. Drissen, M.D., and Grassian, V.H., “Photooxidation of Trichloro-ethylene on Pt/TiO2”, J.Phys.Chem. B, 104:pp.1418-1423, 1998.
80. Lee, W., Do, Y.R., Dwight, K., and Word, A. “Enhancement of photocatalytic Activity of Titanium Oxide with Molybdenum Oxide”, Mater. Res. Bull., 28:pp.1127-1134, 1993.
81. Carlson,T., and Griffin G.L., “Photooxidation of Methanol Ueing V2O5/TiO2 and MoO3/TiO2 Surface Oxide Monolayer Catalysts”, J.Phys.Chem., 90:pp.5896-5900, 1986.
82. Liu, Y.C., Griffin G.L.,Chan, S.S., and Wachs,I.E., “Photooxidation of Methanol Ueing MoO3/TiO2:Catalyst Structure and Reaction Selectivity”, Journal of catalysis, 94:pp108-119, 1985.
83. Sakata, J., Y.,Hirata, Y.,Miyahara,K., Imamura, H., and Tsuchiya, S. “Photocatalytic Activity of TiO2 Loaded CeO2”, Chemistry Letters, pp.391-394, 1993.
84. Schiavello, M.Palmisano,L. “Structural and Surface Characterization of the PolycrystallineSystem CrxOy/TiO2 Empioy for Photoreduction of Dinitrogen and photodegradation of Phenol”, Journal of Catalysis, 134:pp.434-444, 1992.
85. Sabate, J., Anderson, M.A., Xu, Q. and Hill, G.C.,“Nature and Properties of Pure and Nb-Dope TiO2 Ceramic Membranes Affecting the Photocatalytic Degradation of 3-Chlorosalicylic Acid as a Model of Halogenated Organic Compounds”, Journal of Catalysis., 134:pp.34-46, 1992.
86. Kamioka, H., Suzuki, M., Tamiya, E. and karube, I.,“DNA Cleavage Using Semiconductor–Photocatalysts”, J. Mole. Cata., 54:pp.1-8, 1989.
87. Bradford, MCJ., Vannice, MA., “CO2 Reforming of CH4 over Supported Pt Catalysts”, Journal of Catalysis., 173:pp.157-171, 1992.
88. Papaefthimiou, L., and Schiavello, M., “Influence of the Preparation Methods of Pt/TiO2 on the Phorocatalytic Degradation of ethylacetate in Aqueous Dispersion”, J. Phys. Chem., 94︰pp.829-832, 1990.
89. Linsebigler, A., Rusu, C., and John T. “Absence of Platinum Enhancement of a Photoreaction on TiO2-CO Photooxidation on Pt/TiO2”, J. Am. Chem. Soc, 118:pp.5284-5289, 1996.
90. Tauster, S.J., Fung, S.C., and Garten, R.L., “Strong Metal-Support Interactions Group 8 Noble Metals Supported on TiO2”, J. Am. Chem. Soc, 100:pp.170-174, 1978.
91. Fukuzawa, K.S. and Kwan, T., “Photoadsorption and Photodesorption of Oxygen on Titanium Dioxide”, J. Catal., 11︰pp.364, 1968.
92. Bickley, R.I. and Stone, F.S., “Photoadsorption and Photocatalysis at Rutile Surfaces I:Photoadsorption of Oxygen”, J. Catal., 31︰pp.389-398, 1973.
93. Cundall, R.B., Rudham, R., and Salim, M.S., “Photocatalytic Oxidation of Propan-2-ol in the Liquid Phase by Rutile”, J. Chem. Soc. Faraday Trans. I., 72︰pp.1642, 1976.
94. Jaeger, C.D. and Bard, A.J., “Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate System”, J. Phys. Chem., 83(24)︰pp.3146, 1979.
95. Lawless, D., Serpone, N., and Meisel, D., “Role of OH·Radicals and Trapped Holes in Photocatalysis︰ A Plus Radiolysis Study”, J. Phys. Chem., 95︰pp.5166, 1991.
96. Dusoleil, S., Goldfinger, P., Mahieu-Vander Auwera, A.M.,Martens, G., and Vander Auwera, D., “Elemetary Rate ConstantsIn Atomic Chlorination Reactions, Part I.Experiments in Intermittent Light”, J. Chem. Soc. Faraday Trans. I., 57︰pp.2197, 1961.
97. Huybrechts, G., Olbregts, J., and Thomas, K., “Gas-phase Chlorine-photosensitized Oxidation and Oxygen Inhibited Photochlorination of Tetrachloroethylene and Pentachlorethane”, J. Chem. Soc. Faraday Trans. I., 63︰pp.1647, 1967.
98. Goldfinger, P., Huyberechts, G., and Martens, G. “Elementary Rate Constants in Atomic Chlorination Reactions, Part Ⅱ.Experiments in Competitive Systems”, J. Chem. Soc. Faraday Trans. I., 57︰pp.2210, 1961.
99. 劉蟬百,梁乃允,蔣孝徹,楊思明,“二氧化鈦觸媒膜對VOC光解離功效測定”,pp445-450,第十七屆台灣區觸媒及反應工程研討會論文集。
100.Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated Air Toxics”, Appl. Sur. Sci., 72:pp.321-327, 1993.
101.許伯彰,“二氧化鈦光觸媒分解含氯揮發性有機污染物之產物分析集反應路徑探討”,國立中山大學環境工程研究所碩士論文,1998。
102.Nimlos, M.R., Jacoby, W.A., Blake, D.M., and Milne, T.A., “Direct Mass Spectrometric Studies of the Destruction of Hazardous Wastes. 2. Gas-Phase Photocatalytic Oxidation of Trichloroethylene over TiO2: Products and Mechanisms”, ES&T, 27︰pp.732-740, 1993.
103.Gurtler, K.R. and Kleinermanns, K., “Photooxidation of Exhaust Pollutants Ⅱ Photooxidation of Chloromethanes: Degradation Efficiencies, Quantum Yields and Products”, Chemosphere., 28(7)︰pp.1289-1298, 1994.
104.Sakata, T., “Heterogenous Photocatalysis-Fundamentals and Applications”, edited by N. Serpon and E. Pelizzetti, pressed by John Wiley and Sons, Inc., 1989.
105.馬志明,“以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究”, 國立台灣科技大學化學工程技術研究所碩士論文,1998.
106. Falconer,J.L., Kimberley,A.,Magrini,B.,“Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2”, J. Catal., 179︰pp.171-178, 1998.
107.Izumi, I., Fan, F-R.F., Bard, A.J., “ Heterogeneous Photocatalytic Decomposition of Benzoic Acid and Adipic Acid on Platinized TiO2 Powder. The Photo-Kolbe Decarboxylative Route to the Breakdown of the Benzene Ring and to the Production of Butane”, J. Phys. Chem, 85:pp.218-223, 1981.
108.Schierbaum, K.D., Fischer, S., Torquemada, M.C., Dessegovia, J.L., Roman, E., and Martingago, J.A., “The Interaction of Pt with TiO2(110) Surface:A Comparative XPS,UPS,ISS,and ESD study”, Surface Science, 345:pp.261-273, 1996.
109.Rao, N., Sangeeta, D., and Manjubala, P.N., “Photocatalytic
Reduction of Nitrogen over (Fe, Ru or Os) /TiO2 Catalysts”,
Appl. Catal. B︰Environ., 5︰pp.33, 1994.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code