Responsive image
博碩士論文 etd-0731101-143121 詳細資訊
Title page for etd-0731101-143121
論文名稱
Title
質子交換膜燃料電池研究—MEA的製程與應用
On the Study of Proton Exchange Membrane Fuel Cell—The Fabrication and Application of MEA
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-29
繳交日期
Date of Submission
2001-07-31
關鍵字
Keywords
熱壓、質子交換膜燃料電池、電極與交換膜組
Hot-press, MEA, PEMFC
統計
Statistics
本論文已被瀏覽 5734 次,被下載 7166
The thesis/dissertation has been browsed 5734 times, has been downloaded 7166 times.
中文摘要
摘要

本論文探討質子交換膜燃料電池中交換膜電極組(MEA)的製程,研究壓製過程中的幾個操縱變數—壓力、溫度與熱壓時間對MEA性能的影響。
MEA的實驗結果顯示,Nafion112與Nafion117交換膜的熱壓條件在溫度上一致,但用於Nafion112的壓力要稍低於Nafion117,才能獲得較佳之MEA性能。
由於Nafion112較薄,在熱壓過程中其所含的水極易散失,嚴重影響MEA性能,因此MEA壓製完成後須煮水,才能提昇效能。
此研究結果顯示,為求較佳的電池性能,某種加濕機構附於STACK上的設計是必要的,為熟悉PEMFC在應用上的相關技術,本研究亦完成了-使用PEMFC之電動自行車,由於STACK的最大輸出功率只有150W,只有約市售的電動自行車(如GIANT-Lafree 電動自行車400W)的1/3動力,獨立驅動自行車時車速太慢,但作為輔助動力則運轉平順。如果能製造出更大功率的STACK且重新設計電動自行車而非改裝,則PEMFC電動自行車的行駛將更為平順、有效率、及環保。

Abstract
Abstract

The process of the Membrane Electrode Assembly in the Proton Exchange Membrane Fuel Cell and the controllable variables: the pressure, the temperature, and the time of the hot pressure in the producing period would be discussed here.
The experimental result of the MEA revealed that for Nafion112 and Nafion117 membranes, the conditions under the hot pressure are the same in the temperature. However, the pressure used in Nafion112 should be lower than Nafion117. In this case, the better function of the MEA can be achieved.
Because Nafion112 is thinner, its water in the process of the hot pressure would be lost with extreme ease. This has a very serious impact on the function of the MEA. Therefore, to improve the MEA’s function, the MEA should be boiled by water after being fabricated.
The outcome of the research showed that for the purpose of improving the function of the MEA, some humidifier structure adding to the design of STACK is necessary. In order to be familiar to the related practical skills of STACK, PEMFC is brought into use for an electric bicycle in this research. Because the maximum power of STACK is only 150W, which is almost equal to the one-third power of the electric bicycles available such as the 400W of GIANT-Lafree electric bicycle. Besides, the speed of the electric bicycle is too slow when it is operated by itself, but it will be run more smoothly by the means of the assistant power. If the PEMFC electric bicycle can make more useful STACK and be redesigned, not be composed as it used to be, the use of the PEMFC electric bicycle will be steadier, more efficient, and more beneficial to the environment.


目次 Table of Contents
目錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
目錄……………………………………………………………………Ⅲ
圖目錄…………………………………………………………………Ⅶ
表目錄…………………………………………………………………Ⅹ
符號說明………………………………………………………………XI
第一章.緒論………………………………………………………1
1.1燃料電池的簡介………………………………………………1
1.2質子交換膜燃料電池的工作原理、構造……………………3
1.3質子交換膜燃料電池的特點…………………………………4
1.4文獻回顧………………………………………………………5
第二章.交換膜與電極組(MEA)………………………………10
2.1MEA結構………………………………………………………10
2.1.1陽極電極(氫氣側) ……………………………………10
2.1.2陰極電極(氧氣側) ……………………………………11
2.1.3質子交換膜 ………………………………………………12
2.2反應機制 ……………………………………………………13
2.2.1陽極反應 …………………………………………………14
2.2.2陰極反應 …………………………………………………14
2.2.3質傳 ………………………………………………………16
2.3影響MEA性能的因素…………………………………………25
2.4現有MEA的製作方法…………………………………………27
2.4.1交換膜處理 ………………………………………………27
2.4.2電極製作 …………………………………………………29
2.4.3MEA的製作方式……………………………………………31
第三章.MEA壓製實驗……………………………………………33
3.1實驗目標 ……………………………………………………33
3.2實驗設備 ……………………………………………………34
3.2.1實驗材料 …………………………………………………34
3.2.2測試系統 …………………………………………………35
3.2.3壓製與分析設備 …………………………………………39
3.3實驗過程 ……………………………………………………40
3.3.1熱壓實驗前的準備 ………………………………………40
3.3.1.1熱壓膜溫度測試 ………………………………………41
3.3.1.2質子交換膜的處理 ……………………………………41
3.3.1.3測試反應室與MEA接觸緊密度的關係…………………42
3.3.1.4反應室設計 ……………………………………………44
3.3.2熱壓實驗 …………………………………………………45
3.3.2.1熱壓的步驟 ……………………………………………46
3.3.2.2性能測試 ………………………………………………47
第四章.MEA壓製實驗結果與分析………………………………51
4.1熱壓實驗分析 ………………………………………………51
4.1.1壓力的影響 ………………………………………………52
4.1.2熱壓溫度及熱壓時間的影響 ……………………………53
4.2交換膜含水量對MEA性能的影響……………………………56
4.2.1Nafion112水含量分析……………………………………57
4.2.2Nafion115水含量分析……………………………………58
第五章.PEMFC的應用-電動自行車……………………………62
5.1電動自行車的設計考量 ……………………………………62
5.2燃料供應 ……………………………………………………65
5.3質子交換膜燃料電池(PEMFC)………………………………65
5.4 皮帶輪傳動裝置……………………………………………66
5.5 馬達與速度控制……………………………………………68
5.6 性能測試……………………………………………………71
第六章.結論 ……………………………………………………74
6.1結論 …………………………………………………………74
6.2未來展望 ……………………………………………………76
參考文獻…………………………………………………………77
圖1.1.燃料電池的發電原理……………………………………84
圖2.1.實際的燃料電池構造……………………………………85
圖2.1.MEA的基本結構 …………………………………………86
圖2.2.Nafion分子式……………………………………………86
圖2.3.Nafion離子叢群…………………………………………87
圖2.4.Sulphonate基團…………………………………………87
圖2.5.交換膜內細孔帶電的情形………………………………88
圖2.6.Sulphonate基團大小改變………………………………88
圖2.7.Dow XUS膜 ………………………………………………89
圖2.8.Dais Kraton G1650質子交換膜 ………………………89
圖2.9.氫離子的溶劑化(a)H3O+(b)H5O2+(c)H9O4+ …90
圖2.10.氫離子沿氫鍵鏈的跳躍輸運 …………………………90
圖2.11.Grutthuss機理…………………………………………91
圖2.12.運載機理示意圖 ………………………………………91
圖2.13. 分子擴散觸發結構擴散(假定外有2個水層) ………92
圖2.14. 電壓—電流密度特性圖………………………………93
圖2.15. 傳統型製作MEA的過程示意圖 ………………………94
圖2.16. 直接塗佈型製作MEA的過程示意圖 …………………95
圖2.17. 直接噴灑型製作MEA的過程示意圖 …………………96
圖3.1.燃料電池實驗設備圖……………………………………97
圖3.2.測試平台的照片…………………………………………98
圖3.3.勃氏硬度機………………………………………………98
圖3.4.熱壓模……………………………………………………99
圖3.5.電子式天平(AND HR-202)……………………………99
圖3.6.熱壓模的溫度與時間的關係圖 ………………………100
圖3.7.電池組合圖 ……………………………………………101
圖3.8.傳統型式流道示意圖,流道面積比為58.41% ………102
圖3.9.測試反應室與MEA接觸關係裝置………………………102
圖3.10.兩反應室之間的間距與扭矩的關係…………………103
圖3.11.以不同扭矩改變之電壓-電流密度特性圖…………103
圖4.1.以不同熱壓壓力壓製MEA之電壓-電流密度特性圖…104
圖4.2.以不同熱壓溫度壓製MEA之電壓-電流密度特性圖…104
圖4.3.N112含水量對MEA(氧極催化劑PtRu 1 mg/cm2)影響之
電壓-電流密度特性圖…………………………………105
圖4.4.N112含水量對MEA(氧極催化劑Pt 2.5 mg/cm2)影響之
電壓-電流密度特性圖…………………………………105
圖4.5.N115含水量對MEA影響之電壓-電流密度特性圖……106
圖4.6.Nafion112 依membrane處理程序處理後置於空氣中的重
量變化與時間的關係……………………………………107
圖4.7.Nafion115 依membrane處理程序處理後置於空氣中的重
量變化與時間的關係……………………………………107
圖4.8.Nafion112的重量變化與浸水時間的關係……………108
圖5.1.滾動接觸磨擦 …………………………………………108
圖5.2.電動自行車架構設計草圖 ……………………………109
圖5.3.合金儲氫鋼瓶(HyTeC-T1) …………………………110
圖5.4.150W電池組(STACK)…………………………………110
圖5.5.馬達固定架、馬達、控制盒、傳動機構、STACK、儲氫瓶
、儲氫壓力調節閥 ……………………………………111
圖5.6. 切換式直流至直流轉換器(a)二象限操作(b)單象限
操作 ……………………………………………………112
圖5.7.馬達速度控制電路 ……………………………………113
圖5.8.切換式直流至直流轉換器控制原理 …………………114
圖5.9.TL494典型方塊圖………………………………………115
圖5.10.波寬控制電路之系統圖與動作圖……………………116
圖5.11.改裝後的自行車………………………………………117
表 1.1各種燃料電池基本特性比較 …………………………118
表 4.1測試集電板與MEA接觸關係中,燃料電池各組件尺寸119
表 5.1常用之撓性連接物型式 ………………………………120
表 5.2皮帶速度與傳遞動力 …………………………………120
表 5.3V形帶輪之尺寸規範……………………………………121



參考文獻 References
參考文獻

[1] 毛中強,質子交換膜燃料電池(PEMFC)最新進展,新能源,21(1),第7~10頁,民國88年。
[2] 呂俊逸,燃料電池的研究-MEA的製造和性能分析,中山大學論文,民國89年。
[3] 鄭耀宗,萬瑞霙,各種燃料電池的進展分析,台電工程月刊,第601期,第80~90頁,民國87年。
[4] Comas Haynes, Clarifying reversible efficiency misconception of high tmperature fuel cells in relation to reversible heat engines, Power Source, 92, pp. 199~203, 2001.
[5] 金屬大環絡合物電催化還原分子氧的研究進展,唐倩,曹國英,衣寶廉,化學通報第七期,第65~72頁,民國88年。
[6] T. J. Schmidt, H. A. Gasteiger, R. J. Behm, Rotating disk electrode measurements on the CO tolerance of a High-srface area Pt/vulcan carbon fuel cell catalyst, The Electrochemical Society, 146(4), pp. 1296~1304, 1999.
[7] J.M. Rheaume, B. Muller, M. Schulze, XPS analysis of carbon-supported platinum electrodes and characterization of CO oxidation on PEM fuel cell anodes by electrochemical half cell methods, Power Sources, 76, pp. 60~68, 1998.
[8] J. Divisek, H-F. Oetjen, V. Peinecke, V.M. Schmidt and U. Stimming, Components for PEM fuel cell systems using hydrogen and CO containing fuels, Electrochimica Acta 43, pp. 3811~3815, 1998.
[9] P. Gouerec, M. C. Denis, D. Guay, J. P. Dodelet, and R. Schulz, High energy Ballmilled Pt-Mo catalysts for polymer electrolyte fuel cell and their tolerance to CO, The Electrochemical Society, 147(11), pp. 3989~3996, 2000.
[10] G. Lalande, R. Cote, G. Tamizhmani, D. Guay, J. P. Dodelet, L. Dignard-Bailey, L. T. Weng, and P. Bertrand, Physical, Chemical and Electrochemical Characterization of Heat-Treated Tetracarboxylic Cobalt Phthalocyanine Adsorbed on Carbon Black as Electrocatalyst for Oxygen Reduction in Polymer Electrolyte Fuel Cell, Electrochimica Acta, 40(16), pp. 2635~2646, 1995.
[11] L. P. L. Carrette, K. A. Friedrich, M. Huber and U. Stimming, Improvement of CO Tolerance of Proton Exchange Membrane(PEM) Fuel Cell by a Pulsing Technique, The Owner Societies,3 , pp. 320~324, 2001.
[12] Lorenz Gubler, Gunther G. Scherer and Alexannder Wokaun, Effects of Cell and Electrode Design on the CO Tolerance of Polymer Electrolyte Fuel Cells, The Owner Societies, 3, pp. 325~329, 2001
[13] Theodore M. Besmann, James W. Klett, John J. Henry, Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells, The Electrochemical Society, 147(11), pp. 4083~4086, 2000.
[14] Philip L. Hentall, J. Barry Lakeman, Gary O. Mepsted, and Paul L. Adock ”New materials for polymer electrolyte membrane fuel cell current collectors, ” Power Source, 80, pp. 235~241, 1999.
[15] S. Miachon, and P. Aldebert“Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell, ”Journal of Power Source, 56, pp. 31~36, 1995.
[16] F. Barbir, J. Braun, and J. Neutzler “Effect of collector plate resistance on the cell stack perforce, ” Energy Partners, 1999.
[17] O. J. murphy, A. cisar, and E. Clarke “Low-cost Light Weight High Power Density PEM Fuel Cell, ” , Electrochimica Acta, Vol. 43, pp.3829~3840, 1998.
[18] V. A. Paganin, E. A. Ticianelli, E.R.Gonzalez, “Development of small polyer electrolyte fuel cell stacks, ”J. Power Sources, Vol. 70, pp. 55~58, 1998.
[19] Deryn Chu, Rongzhong Jiang, Performance of polymer electrolyte membrane fuel cell(PEMFC)stacks, Power Sources, 83, pp. 128~133, 1999.
[20] Louis P. Jarvis, Terrill B. Atwater, Peter J. Cygan, Fuel cell/electrochemical capacitor hybrid for intermittent high power applications, Power Sources, 79,pp.60~63,1999.
[21] Peter B. Jones, J. Barry Lakeman, Cary O. Mepsted, Jon M. Moore, A hybrid power source for pulse power applications, Power Sources, 80,pp.242~247,1999.
[22] Vincenzo Naso, Marco Lucentini, Marco Aresti, Evaluation of the overall efficiency of a low pressure proton exchange membrane fuel cell power unit, IEEE,pp.1147~1150,2000.
[23] Leo J. M. J. Blomen, and Michael N. Mugerwa, “Fuel Cell Systems, ”Plenum Press.New York.1993.
[24] 黃文迎,曾蓉,質子交換膜燃料電池膜電極,化學通報,第9期,第38~43頁,民國88年。
[25] Mineo Fujimura, Takeji Hashimoto, and Hiromichi Kawai, “Small-Angel X-ray scattering study of perfulorinated ionomer membrane , ” Macromolecules, 14, pp.1309~1315, 1981.
[26] T. D. Gierke, G. E. Munn, and F. C. Wilson “The Morophology in Nafion perfluorinated membrane products ,as determined by wide-and small-angle X-Ray studies , ”Journal of Polymer Science: Polymer Physics Edition, Vol. 19, pp.1687~1704, 1981.
[27] 物理化學,杜逸虹著,三民書局印行,第453頁,民國79年七版。
[28] 吳洪,王宇新,王世昌,水分子參與下的質子輸運機理,化學通報,c99035.htm,民國88年。
[29] Wei Dongqing, Salahub D R. Hydrated proton cluster: ab initio molecular dynamics simulation simulated annealing. J. Chem. Phys., 1997, 106(14): 6086~6094
[30] Lechener R E. Neutron investigation of superprotonic conductor. Ferroelectrics, 1995, 167:83~98
[31] Bockris J M, Reddy A K N. Modern Electrochemistry, Plenum Press, N. Y.,1990 :461~488
[32] Catana D, Hategan Alina, Ionescu M S. Diffusional transport of water and protons across human ecythrocyte membranes. Rom. Rep., 1996, 48(1-2): 117~132
[33] Pomes Regis, Row Benoit. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in gramicidin A channel. Biophys. J., 1996, 71(1): 19~39
[34] Kreuer K D, Rabenau A, Messer R. Proton conductivity in the layer compound H3OUO2AsO4•3H2O (HUAs). Appl. Phys., 1983, A32: 45~53
[35] Kreuer K D, Albrecht Rabenau, Werner Weppner. Vehicle mechanism, A new model for interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Eng1., 1982, 21(3):208~209
[36] Sumner J. J., Creager S. E., Ma J. J., Desmarteau D. D. proton conductivity Nafion117 and in a novel bis[(perfluoroalkyl)sulfonyl] imide ionomer membrane.Electrochem.Soc.,1998,145(1):107~l10
[37] Howe A T, Shilton M G. Studies of layered uranium (ⅤⅠ) compounds. IⅤ.proton conductivity in single-crystal hydrogen uranyl phosphate tetrahydrate (HUP) and polycrystalline hydrogen uranyl arsenate tetrahydrate(HUAs). J. Solld State Chem., 1980,34:149~155
[38] Kreuer K D. Proton Conductors. Chemistry of Solid State Materials 2,ed. Ph. Colomban, Cambridge University Press, 1992:475
[39] Dippel TH, Kreuer K D. Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids. Solid State Ionics,1991 , 46:3~9
[40] Kreuer K D, Dippel TH, Meyer Wolfgang, Maier Joachim. Nafion membrane molecular diffusion, proton conductivity and proton conduction mechanism. Mater Res. Soc. Symp. Proc., 1993,293:273~282
[41] Kobayashi Chigusa, Iwahashi Kensuke, Saito Shinji, Ohmine Iwao. Dynamics proton attachment of water cluster: proton transfer, evaporation, and relaxation J Chem. Phys., 1996,105(15):6358~6366
[42] S. Miachon, and P. Aldebert“Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell, ”Journal of Power Source, 56, 31-36, 1995.
[43] J. H. Lee, T. R. Lalk, and A. J. Appleby “Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks, ”Journal of Power Source, 70, 258-268, 1998.
[44] V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez “Development and electrochemical studies of gas diffusion electrodes for polymer electrelyte fuel cells, ”Journal of Applied Electrochemistry, 26, 197-304, 1996.
[45] Deryn Chu, Rongzhong Jiang “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell, ”J. Power Sources, Vol. 80, pp.226-234,1999.
[46] S-Y.Cha, J-M. Song, and W-E. Lee “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the memberane surface, ”Journal of Applied Electrochemistry, 28, 1413-1418, 1998.
[47] S. Srinivasan, E. A. Ticianelli, C. R. Derouin, and A.Redondo “Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, ”Journal of Power Source, 22, 359-375, 1988.
[48] S. Escribano, P. Aldebert and M. Pineri “Volumic electrodes of fuel cells with polymer electrolyte membranes :electrochemical performances and structural analysis by thermoporomerty, ”Electrochemic Acta, Vol 43, Nos.14-15, pp.2195-2202, 1998.
[49] 鄭煜騰與鄭耀宗, “質子交換膜型燃料電池的製造技術, ”能源季刊, 第二十七卷, pp. 118-131, 民國86年.
[50] Shao Zhingang, Yi Baolian, and Han Ming “Bifunctional electrodes with a thin catalyst layer for ‘unitized’ proton exchange membrane regenerative fuel cell, ”Journal of Power Source, 79, 82-85, 1999.
[51] Young-Gab Chun, Chang-Soo Kim, Dong-Hyun Peck, and Dong-Ryul Shin Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes, ”Journal of Power Source, 71, 174-178, 1998.
[52] S. Y. Cha, and W. M. Lee “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Plathin on the Membrane Surface, ”Journal of Electrochemical Socity, 146 (11), 4055-4060, 1999.
[53]Uchida M, Fukuoka Y. Sugawara Y,et al. Effects of microstructure of carbon support in catalyst layer on the performance of polyrner-electrolyte fuel cells. J Electrochern Soc, 1996, 143(7): 2245~2251
[54] Srinivasan S, Manko D J, Koch H,et al. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. J PowerSources,1990,29: 367~ 387
[55] Wilson M S, Valerio J A, Gotte sfeld S. Low platinum electrolyte fuel cell fabricated using the thermoplastic ionorners. Electrochimica Acta,1995,40(3)355~ 363
[56] Ticiacnelli E A, Derouin C R, Srinivnsan S. Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cell [J]. J Electroanal chem, 1998, 251: 275~295
[57] Kyoung-Hwan Choi, Dong-Hyun Peck, Chang Soo Kim, Dong-Ryul Shin, Water transport in polymer membranes for PEMFC, Power Sources, 86, pp.197~201, 2000.
[58] J.J. Baschuk, Xianguo Li, Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, Power Sources, 86, pp.181~196, 2000.
[59] 吳思明編著,機械設計,大中國圖書公司,民國80年初版。
[60] 江炫樟編譯,電力電子學,全華科技圖書公司,民國88年二版。
[61] Application Report, Designing Switching Voltage Regulators with TL494, TEXAS INSTRUMENTS.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code