Responsive image
博碩士論文 etd-0731105-152748 詳細資訊
Title page for etd-0731105-152748
論文名稱
Title
以螢光鏡透視攝影檢查術作為診斷冠狀動脈疾病的模式: 成本效益的分析
Cinefluoroscopy as a Diagnostic Modality in Detecting Coronary Artery Disease: Costs and Effectiveness Analyses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-30
繳交日期
Date of Submission
2005-07-31
關鍵字
Keywords
螢光鏡透視攝影檢查術、冠狀動脈疾病、冠狀動脈鈣化、電子束電腦斷層
Coronary calcium, cost-effectiveness., coronary artery disease, cinefluoroscopy
統計
Statistics
本論文已被瀏覽 5737 次,被下載 2150
The thesis/dissertation has been browsed 5737 times, has been downloaded 2150 times.
中文摘要
背景:
鈣化沈澱存在冠狀動脈已經成為冠狀動脈粥狀硬化的標誌
設計與設定:
單一醫學中心觀察研究
研究主旨:
(1) 評估以螢光鏡透視攝影檢查術方法對冠狀動脈鈣化的敏感性及特異性,並確認對偵測病人之冠狀動脈在血管照影下大於及等於50%狹窄的可信度。
(2) 評估若在自費高級健康檢查中,加上螢光鏡透視攝影檢查術來測量冠狀動脈鈣化對財務上的利益。
(3) 評估若一個演算法利用螢光鏡透視攝影檢查術來測量冠狀動脈鈣化,能有潛力的成為診斷冠狀動脈狹窄大於及等於50%的初始有成本效益的測驗途徑。
方法:
自2004年11月1日至2005年4月25日,333有接受血管照影來診斷冠狀脈病變的存在或嚴重性的病人被納入此研究。所有的病患在接受選擇性的血管照影之前皆曾經接受螢光鏡透視攝影檢查術來決定其冠狀動脈是否存在鈣化現象。敏感性及差異性之取得,是用來確認螢光鏡透視攝影檢查術在診斷有意義的冠狀動脈病變上是一個可信賴的非侵入性測試。在將心導管檢查室納入或去除下計算成本的考量下,計算螢光鏡透視攝影檢查術的直接成本,全體成本和預估利潤是以長庚醫院每月平均有475名病患進行自費高級健康檢查為基準。計算如果長庚醫院為其自費高級健康檢查的病患而採購的電子束電腦斷層檢查的機器來測量冠狀動脈鈣化的直接成本,全體成本和預估損失。
  一套已使用之測試模式用來診斷阻塞性冠狀動脈病變,其功能在推知此疾病之可能發生率(如盛行率),亦特別計算其成本及成本效益,此測試包括傳統運動心電圖,壓力鉈核子醫學檢查,電子束電腦斷層測知冠狀動脈鈣化程度大於0及大於等於168,以及用螢光鏡透視攝影檢查術測知冠狀動脈鈣化等方法。

結果:
共有253名男性病患及80名女性病患,年齡由35歲至90歲,平均年齡為63.9+11.4。螢光鏡透視攝影檢查術之敏感性及差異性在偵測病患於血管造影之下,冠狀動脈狹窄大於50%的是96%及86%。在長庚醫院,包括心導管室折舊費用計算在內,執行螢光鏡透視攝影檢查術的利潤為每名病患新台幣329元,若在每個月475名接受自費高級健康檢查的病患加上此測試,則可增加每月新台幣156,275元,每年1,875,300元的利潤。若不包括心導管室折舊費用來計算,執行螢光鏡透視攝影檢查術的利潤可至每名病患新台幣838.7元,而每月可達新台幣398,382.5元,每年新台幣4,780,590元。相反地,若在長庚醫院執行電子束電腦斷層測試,則會導致醫院每月損失新台幣1,124,999元,每年損失13,499,880元。在此病變之盛行率小於等於0.7時,使用螢光鏡透視攝影檢查術在初期診斷測試上是具成本效益的,但若盛行率高達1.0時,初期的血管造影在沒有非侵入性測試下,變成診斷阻塞性冠狀動脈病變之最具成本效益之策略。
結論:
(1) 用螢光鏡透視攝影檢查術偵測冠狀動脈鈣化是一個高敏感及中等差異的測試,它並且是一簡單,便宜及安全的技術來預知冠狀動脈疾病。
(2) 在自費高級健康檢查中配合螢光鏡透視攝影檢查術做為檢查項目將帶給醫院可觀的利潤,相反的,若建立電子束電腦斷層檢查項目,則可能為醫院帶來相當的財務損失。
(3) 在評估病患的阻塞性冠狀動脈疾病,利用螢光鏡透視攝影檢查術偵測冠狀動脈鈣化為初期的非侵入性測試方法可減少直接成本,並擴大成本效益。螢光鏡透視攝影檢查術在冠狀動脈狹窄的非侵入性已經被忽視,但它確是在臨床應用上能提供最好保證的方法。
Abstract
Background: The presence of calcified deposits in the coronary arteries has become established as a marker of coronary atherosclerosis.
Design and Setting: Single medical center observational study.
Study objective: 1) To determine the sensitivity and specificity of coronary calcium by cinefluoroscopy (CF) and to validate the reliability of CF in the angiographic detection of > 50% coronary artery stenosis. 2) To assess the financial benefit of adding CF-determined coronary calcium into the self-paid executive physical examination items. 3) To evaluate whether an algorithm using CF to assess coronary calcium has potential as an initial cost-effective testing pathway for diagnosis of > 50% coronary artery stenosis.
Methods: Between November 1, 2004 and April 25, 2005, 333 patients who underwent angiography for diagnosis of and determine the extent of coronary artery disease were enrolled in the study. All patients received CF to determine presence or absence of calcium in the coronary artery system prior to selective angiography. Sensitivity and specificity were then obtained to confirm CF as a reliable non-invasive test for diagnosing > 50% coronary artery stenosis. Direct cost, total cost and estimated profit were calculated with and without the cost of cardiac catheterization laboratory at Chang Gung Memorial Hospital, which has an average of 475 patients/month who undergo self-paid executive physical examinations. Direct cost, total cost and estimated loss of coronary calcium by electron beam computed tomography (EBCT) were calculated for the acquisition of an EBCT machine by Chang Gung Memorial Hospital. A test model was applied to examine the costs and cost-effectiveness of the following diagnostic modalities: the traditional treadmill exercise (TMET); stress thallium and positron emission tomography (THALLIUM); coronary calcium by EBCT calcium score > 0 and > 168; and, coronary calcium by CF for diagnosis of obstructive coronary artery disease (CAD) as a function of pretest likelihood (i.e., prevalence) of disease.
Results: Two hundred fifty three men and 80 women were enrolled in this study (mean age, 63.9+11.4 years; age range, 35-90 years). Sensitivity and specificity of CF in the detection of patients with angiographically coronary artery stenosis >50% were 96% and 86%, respectively. The profit accrued from implementing the CF test at Chang Gung Memorial Hospital, including the cost of the cardiac catheterization laboratory, was NT$329/patient. At 475 patients per month, this test will produce revenue of NT$156,275/month or NT$1,875,300/year. The profit achieved by implementing the CF test at Chang Gung Memorial Hospital, excluding the cost of the cardiac catheterization laboratory was NT$838.7/patient, or NT$398,382.5/month and NT$4,780,590/year. Conversely, implementing the EBCT test will cost Chang Gung Memorial Hospital NT$ 1,124,990/month or NT$ 13,499,880/year. With disease prevalence at < 0.7, CF examination was the most cost-efficient initial diagnostic testing pathway. However, for the group with prevalence at 1.0, the highest group, initial angiography with no prior non-invasive testing was the most cost-effective strategy for diagnosis of obstructive coronary artery disease.
Conclusion: 1) Calcium detection with CF is a highly sensitive and moderately specific test, and a simple, inexpensive, and safe technique for identifying CAD. 2) Instituting CF as a screening test for self-paid executive physical examinations would result in considerable profit for the hospital. Conversely, establishing an EBCT program will produce a substantial financial loss. 3) For patients evaluated for obstructive CAD, a test pathway utilizing CF to detect coronary artery calcium as an initial non-invasive test minimized direct costs and maximized cost-effectiveness. Cinefluoroscopy has been neglected as a noninvasive technique for diagnosis of coronary stenosis and is sufficiently promising to warrant increased clinical use.
目次 Table of Contents
Abstract
中文摘要
English Abstract
Abbreviations
Tables and Figures List
1. Introduction
1.1 Coronary Calcium by Cinefluoroscopy
1.2 Coronary Calcium by Cinefluoroscopy Incorporated into Self-Paid Executive Physical Examinations
1.3 Cost-Effectiveness of Alternative Test Strategies for Diagnosis of Coronary Artery Disease
2. Methods
2.1 Study Population
2.2 Angiographic Definitions
2.3 Cinefluoroscopy Protocol
2.4 Calculation of Direct Cost, Total Cost and Profit or Loss of Cinefluoroscopy and Electron Beam Computed Tomography
2.5 Treadmill and Thallium Stress Tests
2.6 Definitions of Test Effectiveness
2.7 Calculation of Cost-Effectiveness
2.8 Model of Diagnostic Test Pathways and Direct Costs Analysis
2.9 Costs and Revenue Inputs in the Cost-Effectiveness Model
2.10 Statistical Analysis
3. Results
3.1 Baseline Characteristics of Study Patients; Sensitivity and Specificity of Cinefluoroscopy
3.2 Direct Cost, Total Cost and Profit or Loss of Cinefluoroscopy and Electron Beam Computed Tomography
3.3 Cost-Effectiveness of Tests
4. Discussion
5. Conclusion
Appendix A
Appendix B
References
參考文獻 References
REFERENCES
1. Hamby RI, Tabrah f, Wisoff BG, Harstein ML. 1974. Coronary artery calcification: clinical implications and angiographic correlates. American Heart Journal 87:565-570.
2. Bartel AG, Chen JT, Peter RH, Behar VS, Kong Y, Lester RG. 1974. The significance of coronary calcification detected by fluoroscopy. Circulation 49:1247-1253.
3. Hung J, Chaitman BR, Lam J, et al. 1984. Noninvasive diagnostic test choices for the evaluation of coronary artery disease in women: a multivariate comparison of cardiac fluoroscopy, exercise electrocardiography and exercise thallium myocardial perfusion scintigraphy. Journal of American College of Cardiology 4:8-16.
4. Detrano R, Salcedo EE, Hobbs RE, Yiannikas J. 1986. Cardiac cine fluoroscopy as an inexpensive aid in the diagnosis of coronary artery disease. American Journal of Cardiology 57:1041-1046.
5. Langou RA, Huang EK, Kelley MJ, Cohen LS. 1980. Predictive accuracy of coronary artery calcification and abnormal exercise test for coronary artery disease in asymptomatic men. Circulation 62:1196-1203.
6. Rifkin RD, Parisi AF, Folland E. 1979. Coronary calcification in the diagnosis of coronary artery disease. American Journal of Cardiology 44:141-147.
7. Aldrich RF, Brensike JF, Battaglini JW, Richardson JM, Loh IK, Stone NJ, Passamani ER, Ackerstein H, Seningen R, Borer JS, Levy RI, Epstein SE. 1979. Coronary calcifications in the detection of coronary artery disease and comparison with electrocardiographic exercise testing. Results from the National Heart, Lung and Blood Institute’s type II coronary intervention study. Circulation 59:1113-1124.
8. Hopkirk JAC, Uhl GS, Hickman JR Jr, Fischer J, Medina A. 1984. Discrimination value of clinical and exercise variables in detecting significant coronary artery disease in asymptomatic men. Journal of American College of Cardiology 3:887-894.
9. Charuzi Y, Diamond GA, Pichlere M, et al. 1981. Analysis of noninvasive test procedures for the diagnosis of coronary artery disease. Clinical Cardiology 4:67-74.
10. Eggen DA, Strong JP, Mc Gill HC. 1965. Coronary calcification: relationship to clinically significant coronary lesions and race, sex, and topographic distribution. Circulation 32:948-955.
11. Blankenhorn DH. 1961. Coronary artery calcification, a review. American Journal of Medical Science 242:1-9.
12. Breen J, Sheedy P, Schwartz R, et al. 1992. Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Radiology 185:435-439.
13. Fallovollita JA, Brody AS, Bunnell IL, Kimar K.1994. Fast computed tomography detection of coronary calcification in the diagnosis of coronary artery disease: comparison with angiography in patients less than 50 years old. Circulation 89:285-290.
14. Margolis JR, Chen JT, Kong Y, Peter RH, Behar VS, Kisslo JA. 1980. The diagnostic and prognostic significance of coronary artery calcification. Radiology 137:609-616.
15. Witteman JC, Kannel WB, Wolf PA, et al. 1990. Aortic calcified plaques and cardiovascular disease (the Framingham study). American Journal of Cardiology 66:1060-1064.
16. Habbe EJ, Wright HH. 1950. Roentgenographic detection of coronary arteriosclerosis. American Journal of Roentgenology Radiation Therapy 63:50-62.
17. Lieber A, Jorgens J. 1961. Cinefluorography of coronary artery calcification. American Journal of Roentgenology 86:1063-1072.
18. McGuire J, Schneider HJ, Chou TC. 1968. Clinical significance of coronary artery calcification seen fluoroscopically with the image intensifier. Circulation 37:82-87.
19. Oliver MF, Morley P, Samuel E, Young GB, Kapur PL. 1964. Detection of coronary artery calcification during life. Lancet 1:891-895.
20. Erikssen J, Enge I, Forfang K, et al. 1976. False positive diagnostic tests and coronary angiographic findings in 105 presumably healthy males. Circulation 54:371-376.
21. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. 1995. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlation study. Circulation 92:2157-2162.
22. Mautner SL, Mautner GC, Froehlich j, et al. 1994. Coronary artery disease: prediction with in vitro electron beam CT. Radiology 192:625-630.
23. Rumberger JA, Schwartz RS, Simons DB, Sheedy PF, Edwards WD, Fitzpatrick LA. 1994. Relations of coronary calcium determined by electron-beam computed tomography and lumen narrowing determined at autopsy. American Journal of Cardiology 73:1169-1173.
24. Rumberger JA, Sheedy PF, Breen JR, Schwartz RS. 1995. Coronary artery calcium as determined by electron-beam computed tomography, and coronary disease on arteriogram: effect of patient’s sex on diagnosis. Circulation 91:1363-1367.
25. Budoff MK, Georgiou D, Brody A, et al. 1996. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease – a multicenter study. Circulation 93:898-904.
26. Kajinami k, Seki H, Takehoshi N, Mabushi H. 1995. Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification using electron beam computed tomography: a comparison with electrographic and thallium exercise stress test results. Journal of American College of Cardiology 26:1209-1221.
27. Rumberger JA, Sheedy PF, Breen JR, Schwartz RS. 1997. Electron beam CT coronary calcium score cutpoints and severity of associated angiography luminal stenosis. Journal of American College of Cardiology 29:1542-1548.
28. Detrano R, Tzung H, Wang S, et al. 1996. Prognostic value of coronary calcification and angiographic stenosis in patients undergoing coronary angiography. Journal of American College of Cardiology 27:285-290.
29. Arad Y, Spadaro LA, Goodman K, et al. 1996. Predictive value of electron beam computed tomography of the coronary arteries – 19 month follow-up of 1173 asymptomatic patients. Circulation 93:1951-1953.
30. Secci A, Wong N, Tang W, Wang S, Doherty T, Detrano R. 1997. Electron beam computed tomographic coronary calcium as a predictor of coronary events: comparison of two protocols. Circulation 96:1122-1129.
31. Weinstein MC, Fineberg HV, Elstein AS, et al. 1980. Clinical Decision Analysis. Philadelphia: WB Saunders 228-265.
32. Patterson RE, Eng C, Horowitz SF, Gorlin R, Goldstein SR. 1984. Bayesian comparison of cost-effectiveness of different clinical approaches to diagnose coronary artery disease. Journal of American College of Cardiology 4:278-289.
33. McNeil BJ, Varady PD, Burrows BA, Adelstein SJ. 1975. Measures of clinical efficacy: cost-effectiveness calculations in the diagnosis and treatment of hypertensive renovascular disease. New England Journal of Medicine 293:216-221.
34. Patterson RE, Eisner RL, Horowitz SF. 1995. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 91:54-65.
35. Gianrossi R, Detrano R, Mulvihill D, et al. 1989. Exercise-induced ST depression in the diagnosis of coronary artery disease – meta-analysis. Circulation 80:78-98.
36. Maddahi J, Rodriques E, Berman DS, Kiat H. 1994. State-of-the-art myocardial perfusion imaging. Cardiology Clinics 12:199-222.
37. Borer JS, Brensike JF, Redwood DR, Itscoitz SB, Passamani ER, Stone NJ, Richardson JM, Levy RI, Epstein SE. 1975. Limitations of the electrocardiographic response to exercise in predicting coronary artery disease. New England of Journal Medicine 293:367
38. Redwood DR, Borer JS, Epstein SE. 1976. Whither the ST segment during exercise? Circulation 54:703
39. Sheffield LT, Reeves TJ, Blackburn H, Ellestad MH, Froelicher VF, Roitman D, Kansal S. 1976. The exercise test in perspective. Circulation 55:681
40. Froelicher VF, Thompson AJ, Wolthius R, Fuchs R, Balusek R, Longo MR, Triebwasser JH, Lancaster MC. 1977. Angiographic findings in asymptomatic air crewmen with electrographic abnormalities. American Journal of Cardiology 39:32
41. Bartel AG, Behar VS, Peter RH, Orgain ES, Kong Y. 1974. Graded exercise tests in angiographically documented coronary artery disease. Circulation 49:348.
42. Goldschlager N, Selzer A, Cohn K.1976. Treadmill stress-tests as indicators of presence and severity of coronary artery disease. Annals of Internal Medicine 85:277.
43. Kattus AA. 1976. Exercise electrocardiography: recognition of the ischemic response, false positive and negative patterns. American Journal of Cardiology 33:277.
44. Keleman MH, Gillihan RE, Bouchard RJ, Hepper RL, Warbasse JR. 1973. Diagnosis of obstructive coronary disease by maximal exercise atrial pacing. Circulation 26:956.
45. Martin CM, McConahay DR. 1972. Maximal treadmill exercise electrocardiogarphy. Correlations with coronary arteriography and cardiac hemodynamics. Circulation 26:956.
46. Froelicher VF, Thompson AJ, Longo MR, Triebwasser JH, Lancaster MC. 1976. Value of exercise testing for screening asymptomatic men for latent coronary artery disease. Progress in Cardiovascular Disease 18:265.
47. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R.1990. Quantification of coronary artery calcium using ultrafast computed tomography. Journal of American College of Cardiology 15:827-832.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code