Responsive image
博碩士論文 etd-0731106-100342 詳細資訊
Title page for etd-0731106-100342
論文名稱
Title
以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用
The Study of ZnO Piezoelectric Thin Film Prepared by Two-Step Sputtering for FBAR Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-18
繳交日期
Date of Submission
2006-07-31
關鍵字
Keywords
薄膜體聲波共振器、氧化鋅
FBAR, ZnO
統計
Statistics
本論文已被瀏覽 5690 次,被下載 5958
The thesis/dissertation has been browsed 5690 times, has been downloaded 5958 times.
中文摘要
本論文之研究目的為以室溫兩階段濺鍍法沉積氧化鋅壓
電薄膜, 並進行薄膜體聲波共振器元件之製作及其特性分
析。首先沉積白金電極於鈦晶種層上(Pt/Ti/SiNx/Si),以改善
白金電極與矽基板之附著性,由實驗結果顯示於鈦晶種層厚
度為12nm 時, 白金電極之表面粗糙度、片電阻及晶粒大小
分別為0.69nm、2.6Ω/□及10nm 以下, 對薄膜體聲波共振器
之製作及特性的提昇將有明顯之改善。接著利用射頻磁控濺
鍍法以室溫兩階段濺鍍沉積氧化鋅薄膜,於第一階段採用粗
糙度低之參數作為氧化鋅的晶種層;第二階段則調變氧氣濃
度沉積高c 軸優選排向之參數。實驗結果顯示兩階段濺鍍可
得到高c 軸優選排向、表面型態緻密、低粗糙度(7nm)與剖面
柱狀結構明顯的氧化鋅薄膜,適合作為薄膜體聲波共振器之
壓電層材料使用。
本研究之薄膜塊體聲波共振器(Film Bulk Acoustic
Resonator, FBAR), 採用背部蝕刻矽基板型結構, 先以濕式
蝕刻法形成聲波空腔, 於正面以鈦為晶種層、白金為底電
極, 並以室溫兩階段濺鍍成長高c 軸優選取向之氧化鋅薄
膜; 本研究所得基頻共振頻率為1.804GHz、反射損失(return
loss)約為60dB 及機電耦合係數為3.2% 。
Abstract
In this study, a two-step deposition method using RF
reactive magnetron sputtering is proposed to obtain high quality Piezoelectric ZnO thin films for film bulk acoustic resonators (FBARs). The titanium (Ti) seeding layer and platinum (Pt) bottom electrode were deposited by a dual gun DC sputtering system. The properties of thin film are investigated using the scanning electron
microscope (SEM), Atomic force microscope (AFM) and the
four-point probe method. The results show that the Pt bottom electrode deposited on the Ti seeding layer has lots of favorable characteristics, such as the crystallite size smaller than 10 nm, a surface roughness of 0.69 nm and a sheet resistance of 0.26 Ω/□. The bottom electrode with the low resistance and the low surface roughness contribute markedly to the performances of the FBAR device.
The Ttwo-step deposition method was adopted for ZnO thin
film deposition, The 1st step deposition is focused on lowering the surface roughness of ZnO seeding layer films. The c-axis preferred orientation of ZnO film This is accompanied by the 2nd step deposition where the sputtering parameters O2 concentration arewere controlled to enhance the c-axis preferred growth of ZnO films. The AFM image shows that the surface roughness of the ZnO film is drastically reduced. It is also observed by monitoring the XRD spectra that the films deposited by two-step method reveal the high c-axis preferred orientation.
Finally, the frequency response of ZnO-FBAR device using the two-step sputtering method shows the excellent performance at center frequency of 1.804GHz with the return loss of nearly 60dB and the electro-mechanical coupling coefficient of 3.2%.
目次 Table of Contents
目錄
摘要 Ⅰ
目錄 Ⅲ
圖表目錄 Ⅶ
第一章 前言 1
第二章 理論分析 6
2.1 壓電模數 6
2.2 晶體對稱性 8
2.3 晶體學 9
2.4 壓電理論 10
2.4.1 壓電效應 11
2.4.2 壓電方程式 12
2.4.3 壓電材料 14
2.5 氧化鋅結構與特性 15
2.6 薄膜沈積原理 16
2.6.1 沉積現象 16
2.6.2 薄膜表面與截面結構 17
2.7 反應性射頻磁控濺鍍原理 17
2.7.1 輝光放電 18
2.7.2 磁控濺射 18
2.7.3 射頻濺射 19
2.7.4 反應性濺射 19
2.8 FBAR結構及原理 20
2.8.1 Kt2,eff之測量 21
2.8.2 Q值之測量 21

第三章 實驗步驟 23
3.1 RCA清洗基板 23
3.2 直流濺鍍系統與薄膜沈積 24
3.3 射頻濺鍍系統與薄膜沈積 25
3.4 薄膜特性分析 27
3.4.1 X光繞射分析 27
3.4.2 掃描式電子顯微鏡分析 27
3.4.3 原子力顯微鏡分析 28
3.4.4 四點探針分析 28
3.5 FBAR元件製作流程 29
3.5.1 黃光微影製程 29
3.5.2 SiNx薄膜沉積 29
3.5.3 背部蝕刻窗口與底電極之製作 30
3.5.4 KOH蝕刻背部空腔 31
3.5.5 壓電層之製作 31
3.5.6 上電極之製作 31
3.5.7 反應式離子蝕刻 32
3.6 FBAR元件設計與測量 32

第四章 結果與討論 34
第一部份:鈦晶種層實驗探討 34
4.1 X光繞射(XRD)分析 34
4.2 掃描式電子顯微鏡(SEM)分析 35
4.3 原子力顯微鏡(AFM)分析 36
4.4 四點探針(Four-Point Prode)分析 37
第二部份:室溫成長氧化鋅壓電薄膜之探討 38
4.5 濺鍍功率之影響 38
4.5.1 X光繞射(XRD)分析 38
4.5.2 掃描式電子顯微鏡(SEM)分析 39
4.6 氧氣濃度之影響 39
4.6.1 X光繞射(XRD)分析 39
4.6.2 掃描式電子顯微鏡(SEM)分析 40
4.7 濺鍍壓力之影響 41
4.7.1 X光繞射(XRD)分析 41
4.7.2 掃描式電子顯微鏡(SEM)分析 41
4.8 室溫兩階段濺鍍法 42
4.8.1 氧氣濃度之影響 42
4.8.2 室溫兩階段濺鍍參數之探討 43
4.9 元件量測結果與探討 44
第五章 結論 46
參考文獻 48

圖表目錄

圖1-1 FBAR元件之(a)側視面,(b)上視圖 55
圖1-2 體聲波元件之類型 56
圖2-1 單位晶胞應力示意圖 57
圖2-2 壓電效應:(a)正壓電效應,(b)逆壓電效應 58
圖2-3 氧化鋅(ZnO)結構 59
圖2-4 薄膜沈積步驟,(a)成核、(b)晶粒成長、(c)晶粒聚結、
(d)縫道填補、(e)薄膜之沈積 60
圖2-5 濺鍍參數對沈積薄膜之影響 61
圖2-6 直流輝光放電結構與電位分佈圖 62
圖2-7 平面型圓形磁控之結構圖 63
圖2-8 平面磁控結構及電子運動路徑 64
圖2-9 反應性濺射之模型 65
圖2-10 聲波於高聲波能量反射介面之聲波反射示意圖 65
圖3-1 直流磁控濺鍍系統 66
圖3-2 直流/射頻磁控濺鍍系統操作之流程圖 67
圖3-3 射頻磁控濺鍍系統 68
圖3-4 四點探針量測 69
圖3-5 舉離法 70
圖3-6 FBAR製作流程圖 71
圖4-1 白金電極之(111)晶向強度與鈦晶種層厚度(0~50nm)之
關係 72
圖4-2 氧化鋅薄膜沉積於白金電極上具(002)晶向強度與鈦晶 種層厚度(0~50nm)之關係 72
圖4-3 氧化鋅薄膜成長於白金電極上,(a)無鈦晶種層,(b)有
鈦晶種層之成長機制圖 73
圖4-4 白金電極成長於不同鈦晶種層厚度(0~50nm)之SEM
圖 74
圖4-5 氧化鋅薄膜沉積於不同鈦晶種層厚度(0~50nm)之白金
電極上的SEM圖 75
圖4-6 氧化鋅薄膜沉積於鈦晶種層厚度為45nm之白金電極
上的SEM剖面圖 76
圖4-7 白金電極成長於不同鈦晶種層厚度(0~50nm)之AFM
圖 77
圖4-8 氧化鋅薄膜沉積於不同鈦晶種層厚度(0~50nm)之白金
電極上的AFM圖 78
圖4-9 白金電極成長於不同鈦晶種層厚度(0~50nm)之片電阻值 79
圖4-10成長於不同鈦晶種層厚度上(0~50nm)之白金電極以硝酸蝕刻之片電阻值 80
圖4-11成長於不同鈦晶種層厚度上(0~50nm)之白金電極以磷酸蝕刻之片電阻值 80
圖4-12 於室溫、氧氣濃度75%、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同濺鍍功率所得氧化鋅薄膜之XRD圖 81
圖4-13 於室溫、氧氣濃度75%、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同濺鍍功率所得氧化鋅薄膜之SEM表面形態 82
圖4-14 於室溫、氧氣濃度75%、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同濺鍍功率所得氧化鋅薄膜之SEM剖面圖 83
圖4-15 於室溫、濺鍍功率80W、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之XRD圖 84
圖4-16 於室溫、濺鍍功率80W、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之沉積速率圖 85
圖4-17 於室溫、濺鍍功率80W、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之SEM表面形態圖 86
圖4-18 於室溫、濺鍍功率80W、濺鍍壓力5mTorr、沉積時間
1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之SEM剖面圖 87
圖4-19 於室溫、濺鍍功率80W、氧氣濃度75%、沉積時間
1小時之條件下,不同濺鍍壓力所得氧化鋅薄膜之XRD圖 88
圖4-20 於室溫、濺鍍功率80W、氧氣濃度75%、沉積時間
1小時之條件下,不同濺鍍壓力所得氧化鋅薄膜之SEM表面形態圖 89
圖4-21 於室溫、濺鍍功率80W、氧氣濃度75%、沉積時間
1小時之條件下,不同濺鍍壓力所得氧化鋅薄膜之SEM剖面圖 90
圖4-22 於室溫下、濺鍍壓力15mTorr、濺鍍功率80W、沉積
時間1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之XRD圖 91
圖4-23 於室溫、濺鍍壓力15mTorr、濺鍍功率80W、沉積時
間1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之SEM表面形態圖 92
圖4-24 於室溫、濺鍍壓力15mTorr、濺鍍功率80W、沉積時
間1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之SEM剖面圖 93
圖4-25 於室溫、濺鍍壓力15mTorr、濺鍍功率80W、沉積時間
1小時之條件下,不同氧氣濃度所得氧化鋅薄膜之AFM圖 94
圖4-26 於室溫下以單一階段濺鍍沉積之ZnO薄膜之XRD圖 95
圖4-27 於室溫下以兩階段濺鍍沉積之ZnO薄膜之XRD圖 95
圖4-28 於室溫下以兩階段濺鍍沉積之ZnO薄膜之SEM圖 96
圖4-29 於Pt/Ti/SiNx/Si基板上以室溫兩階段濺鍍成長氧化鋅薄膜之XRD圖 97
圖4-30 於Pt/Ti/SiNx/Si基板上以室溫兩階段濺鍍成長氧化鋅薄膜之SEM圖 97
圖4-31 體聲波元件之上視圖 98
圖4-32 體聲波元件背部含有殘留矽之蝕刻窗口圖 98
圖4-33 體聲波元件之S21量測結果 99
圖4-34 體聲波元件背部完全蝕刻之窗口圖 99
圖4-35 體聲波元件1 ~ 4 GHz量測範圍之(a)S11,及(b)S21量測
結果 100
圖4-36 體聲波元件1.3 ~ 2.3 GHz量測範圍之(a)S11,及(b)S21
量測結果 101
表一 陶瓷濾波器、表面聲波濾波器及FBAR濾波器之比較 102
表二 各種材料及空氣之聲波阻抗值 102
表三 張量表示法與矩陣表示法 103
表四 正逆壓電效應之表示式 103
表五 七大晶系與壓電晶體點群關聯 104
表六 氧化鋅與氮化鋁特性 105
表七 氧化鋅(ZnO)基本特性表 106
表八 直流磁控濺鍍法沉積金屬之系統參數 107
表九 反應性射頻濺鍍氧化鋅之系統參數 108
表十 反應性射頻濺鍍室溫氧化鋅之系統參數 109
表十一 氧化鋅(ZnO)之JCPDS Data 110
表十二 成長鉬電極之系統參數 111
表十三 單一階段濺鍍與兩階段濺鍍之參數 112
參考文獻 References
[1] Brian P. Otis, Jan M. Rabaey, “A 300um 1.9GHz COMS Oscillator Utilizing Micromachined Resonators,” IEEE Journal of Solid-State Circuits, pp.1271-1274, vol.38, No.7, July 2003.
[2] Paul Bradley, Richard Ruby, John D. Larson III, Yury Oshmyansky, Domingo Figueredo, “A Film Bulk Acoustic Resonator Duplexer for USPCS Handset Applications,” IEEE MTT-S Digest, pp.367-370, 2001.
[3] Kok-Wan TAY, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators,” Japanese Journal of Applied Physics, vol. 43, No.8A, pp.5510-5515, 2004.
[4] R. C. Ruby, P. Bradley, Y. Oshmyansky, “Thin Film Bulk Acoustic Resonators for Wireless Applications,” IEEE Ultrason. Symp, pp.813-821, 2001.
[5] Dong-Hyun Kim, Munhyuk Yim, Dongkyu Chai, Giwan Yoon, “Improvements of Resonance Characteristics Due to Thermal Annealing of Bragg Reflectors in ZnO-Based FBAR Devices,” Electronics Letters, vol.39, No.13, June, 2003.
[6] J. Larson, “Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900MHz PCS Band,” IEEE Ultrasonics Symposium, pp.869-874, 2000.
[7] Motoaki Hara, Jan Kuypers, Masayoshi Esashi, “Surface Micromachined AlN Thin Film 2GHz Resonator for CMOS Integration,” Sensors and Actuators, A117, pp.211-216, 2005.
[8] R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner, “Advancement of MEMS into RF-Filter Applications,” IEEE IEDM, pp.897-900, 2000.
[9] R. B. Stokes and J. D. Crawfold: “X-Band Thin-Film Acoustic Filter on GaAs”, IEEE Trans. Microwave Theory Tech., vol. 41, pp.1075-1080, July 1993.
[10] V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore: “Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
[11] M.Schmid, E. Benes, W. Burger, and V. Kravchenko: “Motional Capacitance of Ayered Piezoelectric Thickness-mode Resonators”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 38, pp.199-206, May 1991.
[12] Jin-Bock Lee, Jun-Phil Jung, Myung-Ho Lee, Jin-Seok Park, Thin Solid Films, pp.447 –448, 2004.
[13] Dong-Hyun KIM, Munhyuk YIM, Dongkyu CHAI, Jin-Seok PARK1 and Giwan YOON, Japanese Journal of Applied Physics Vol. 43, No. 4A, 2004, pp.1545–1550.
[14] K. H. Yoon and J. Y. Cho, “Photoluminescence Characteristics of Zinc Oxide Thin Films Prepared by Spray Pyrolysis Technique,” Mater. Res. Bull., vol. 35, pp.39-46, 2000.
[15] Z. Fu, B. Lin and J. Zu, “Photoluminescence and Structure of ZnO Films Deposited on Si Substrates by Metal-Organic Chemical Vapor Deposition,” Thin Solid Films, vol. 402, pp.302-306, 2002.
[16] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng, “The Growth and Annealing of Single Crystalline ZnO Films by Low-Pressure MOCVD,” J. Crystal Growth, vol. 243, pp.151-156, 2002.
[17] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO Thin Films for High-Resolution Field Emission Display by Electron Beam Evaporation,” Appl. Surf. Sci., vol. 142, pp.233-236, 1999.
[18] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of Substrate Temperature on the Orientation and Optical Properties of Sputtered ZnO Films,” Mater. Lett., vol. 75, pp.4655-4659, 2003.
[19] W. Water and S. Y. Chu, “Physical and Structural Properties of ZnO Sputtered Films,” Mater. Lett., vol. 55, pp.67-72, 2002.
[20] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of Post-Annealing Treatment on the Light Emission Properties of ZnO Thin Films on Si,” Opt. Mater., vol. 17, pp.327-330, 2001.
[21] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng, “Evolution of Visible Luminescence in ZnO by Thermal Oxidation of Zinc Films,” Chem. Phys. Lett., vol. 375, pp.113-118, 2003.
[22] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of Oxygen Plasma Condition on MBE Growth of ZnO,” J. Crystal Growth, vol. 209, pp.522-525, 2000.
[23] D. G. Baik and S. M. Cho, “Application of Sol-Gel Films for ZnO/n-Si Junction Solar Cells,” Thin Solid films, vol. 354, pp.227-231, 1999.
[24] Hee-Chul Lee, Jae-Young Park, Kyung-Hak Lee, and Jong-Uk Bu, J. Vac. Sci. Technol. B, pp.1127-1133, 2004.
[25] K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, and C.W. Andrus, “Bulk Acoustic Wave Resonators And Filters for 2GHz”, MTT-S 2002 Paper TH1D-6 Expanded.
[26] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol. 43, pp.5510-5515, 2004.
[27] P.B. Kirby, M.D.G. Potter, C.P. Williams and M.Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp.2689-2692, 2003.
[28] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp.1012-1016, 2005.
[29] R. Jakkaraju , G. Henn , C. Shearer , M. Harris , N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[30] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators” , J. Vac. Sci. Technol. A 21, pp.1-5, Jan/Feb 2003.
[31] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”.
[32] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp.255-258, 2001.
[33] T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, 2002 IEEE Ultrasonic Symposium, pp. 945-948.
[34] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, 2002 IEEE Ultrasonic Symposium, pp. 981-983.
[35] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, in Proc. IEEE, vol. 53, pp.575-581, 1965.
[36] K. M. Lakin, “Development of Miniature Filters for Wireless Applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 43, pp.2933-2939, 1995.
[37] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator Using Aluminium Nitride Deposition by RF Sputtering”.
[38] T. Nishihara, T. Yokoyama, T. Miyashita, Y. Satoh, “High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5GHz,” IEEE Ultrasonics Symposium, pp.969-972, 2002.
[39] Jin Bock Lee, Jun Phil Jung, Myung Ho Lee, Jin Seok Park, “Effects of Bottom Electrodes on the Orientation of AlN Films and the Frequency Responses of Resonators in AlN Based FBARs,” Thin Solid Films, pp. 610-614, 2004.
[40] Morito Akiyama, Keigo Nagao, Naohiro Ueno, Hiroshi Tateyama, “Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films,” Journal of Vacuum Science and Technology, vol.74, pp.699-703, 2004.
[41] Kok-Wan Tay, “Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics,” Japanese Journal of Applied Physics, Vol. 43, No.3, pp.1120-1126, 2004.
[42] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,1994年。
[43] Qing Xin Su, Paul Kirby, Eiju Komuro, Massaaki Imura, Qi Zhang, Roger Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films,” IEEE Transactions on Microwave Theory and Techniques, vol.49, No.4, pp.769-778, April 2001.
[44] 水瑞鐏,“氧化鋅薄膜特性及其於通訊元件與液體感測器上之應用”,國立成功大學電機工程學系,博士論文,2002年。
[45] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances Presented by Zinc Oxide Thin Films Deposited by r.f. Magnetron Sputtering,” Vacuum, vol. 64, pp.293-297, 2002.
[46] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and Properties of p-n Junctions in Reactively Sputtered ZnO,” Physica B, vol. 308-310, pp.1197-1200, 2001.
[47] Y. Igasaki and H. Saito, “The Effects of Zinc Diffusionon the Electrical and Optical Properties of ZnO:Al Films Prepared by RF Reactive Sputtering,” Thin Solid Films, vol. 199, pp.223-230, 1991.
[48] M.T. Young and S.D. Keun, “Effects of Rapid Thermal Annealing on the Morphology and Electrical Properties of ZnO/In Films,” Thin Solid Films, vol. 410, pp.8-13, 2002.
[49] 莊達人,“VLSI製造技術”,高立圖書股份有限公司,1995年。
[50] J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings,” J. Vac. Sci. Technol., vol. 11, pp.666-698, 1974.
[51] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,1990年。
[52] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, pp.201. 1980.
[53] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp.134, 1991.
[54] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp.696-701, 1991.
[55] 王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,1995年。
[56] 蔡家龍,”製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,2000年。
[57] 歐天凡,”沈積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所碩士論文,2004年。
[58] I. Zubel, M. Kramkowska : Seners and Actuators A 115, pp. 549-556, 2004.
[59] 郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究”,國立中山大學電機工程研究所碩士論文,2004年。
[60] 施敏(原著),黃調元(譯),”半導體元件物理與製作技術”,國立交通大學出版社,2002 年9 月。
[61] Toshihiro Kamohara, Morito Akiyama, Naohiro Ueno, Kazuhiro Nonaka and Hiroshi Tateyama, “Growth of Highly C-Axis-Oriented Aluminum Nitride Thin Films on Molybdenum Electrodes Using Aluminum Nitride Interlayers,” Journal of Crystal Growth., vol. 275, pp.383-388, 2005.
[62] W. Water and S. Y. Chu, “Physical and Structural Properties of ZnO Sputtered Films,” Mater. Lett., vol. 55, pp.67-72, 2002.
[63] P. M. Verghese and D. R. Clarke, “Surface Textured Zinc Oxide Films,” J. Mater. Res., Vol. 14, No.3, pp.1039, 1999.
[64] Sang-Hyun Park, Byeng-Chul Seo, Hee-Dae Park and Giwan Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications,” J. Appl. Phys., Vol. 39 (2000) pp.4115-4119
[65] F. Sinoki and A. Itoh, “Mechanism of RF Reactive Sputtering,” J. Appl. Phys., vol. 46[8], pp.3381-3384, 1975.
[66] J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices,” Artech House Inc, London England, pp.3-452, 1998.
[67] Yoshiki Makishima, Ken-ya Hashimoto, Masatsune Yamaguchi, “Thin-Film Bulk Acoustic Tesonators Empolying ZnO/Pyrex-Glass Composite Diaphragm Structure,” Jpn. J. Appl. Phys. Vol.33, pp.2998-3000, 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code