Responsive image
博碩士論文 etd-0731106-162411 詳細資訊
Title page for etd-0731106-162411
論文名稱
Title
鈦酸鉍薄膜之製備及其鐵電特性之研究
Study on the Preparation and Ferroelectric Properties of Bi4Ti3O12 Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-25
繳交日期
Date of Submission
2006-07-31
關鍵字
Keywords
鈦酸鉍、鐵電、交流薄膜電激發光、極化、濺鍍
Bi4Ti3O12, Ferroelectric, Sputtering, Polarization, ACTFEL
統計
Statistics
本論文已被瀏覽 5642 次,被下載 1777
The thesis/dissertation has been browsed 5642 times, has been downloaded 1777 times.
中文摘要
本論文以射頻磁控濺鍍系統,在室溫以Bi4Ti3O12及Bi4Ti3O12+4wt% Bi2O3兩種陶瓷靶材,分別沉積鈦酸鉍(Bi4Ti3O12)鐵電薄膜於銦錫氧化物(ITO)/玻璃及Pt/Ti/SiO2/Si基板上,所得薄膜再以紅外線黃金快速退火系統,在純氧的環境中對薄膜做熱處理。本研究主要的目的在探討:(一)不同製程條件與基板對薄膜成長的物性及電性之影響;(二) 薄膜內的鉍元素在高溫退火時揮發的情形,及其對薄膜特性的影響,並尋求有效的鉍元素之補償方法,改進薄膜特性;(三)將所得Bi4Ti3O12薄膜應用於以硫化鋅(ZnS:TbOF)為螢光材料之交流薄膜電激發光元件(ACTFEL)的絕緣層上,探討鈦酸鉍與硫化鋅兩種薄膜相互間的交互作用,並估其應用之可行性。
實驗結果顯示,經X光繞射分析(XRD)發現濺鍍所得薄膜在650℃、15分鐘,或700℃、10分鐘以上快速熱退火後,開始有結晶相發生。700℃、15分鐘的熱處裡可得最理想特性的鈦酸鉍鐵電薄膜。Bi4Ti3O12薄膜在500 kV/cm 的外加電場下仍未發生介電崩潰現象,漏電流密度穩定小於10-6 A/cm2。在1 kHz的操作頻率下,相對介電常數可達307,損失因子約為0.02。在500 Hz正弦波操作頻率下,殘餘極化量與矯頑電場分別為3.7 μC/cm2 與 80 kV/cm。在550 nm可見光波長下,薄膜透光率接近100%。
掃描式電子顯微鏡(SEM)觀測到晶粒外形、大小與薄膜厚度均與基板有密切關連;在相同製程條件下,Pt/Ti/SiO2/Si基板較ITO/Glass基板有利於Bi4Ti3O12薄膜的成長。由能譜儀(EDS)分析得知Bi/Ti值略小於靶材之Bi/Ti值,顯示製程中Bi有揮發現象,並且主要集中在薄膜表面處,薄膜內部的Bi揮發情形不明顯。而使用4wt% 過量Bi2O3添加於靶材中,或使用置於薄膜外部的Bi2O3粉末於高溫下退火,均可達到補償Bi元素揮發的損失,而改善Bi4Ti3O12薄膜的特性。最後,螢光材料ZnS:TbOF濺鍍在Bi4Ti3O12薄膜上時,Zn、S與Bi元素易有交互擴散與化學反應產生,透光率大幅下降,使用100 nm的SiO2薄膜可有效隔絕兩層膜之間的交互擴散,提高可見光穿透率及介電崩潰。
Abstract
In this thesis, Bi4Ti3O12 thin films are deposited on ITO/glass and Pt/Ti/SiO2/Si substrates using RF magnetron sputtering at room temperature and two kinds of targets with different compositions of Bi4Ti3O12 and Bi4Ti3O12+4wt% Bi2O3, respectively, and then heated by a rapid thermal annealing (RTA) process in an oxygen atmosphere. Three topics are focused in this research, they are: (1) to study the effects of different fabricated conditions and substrates on the physical and electrical characteristics of Bi4Ti3O12; (2) to investigate the influence of bismuth evaporation during thermal process on the characteristics of thin films, and seeking for the methods of bismuth compensation; and (3) applying the Bi4Ti3O12 film as the insulting layer of AC thin film electroluminescence device with the phosphor layer of ZnS:TbOF, and investigating the interaction between the two films.
The experimental results indicate that intensities of X-ray diffraction (XRD) peaks of the films are evident when annealing at 650℃ for 15 min or at 700℃ for 10 min using RTA process, and the optimal properties of polycrystalline Bi4Ti3O12 thin films can be obtained at 700℃ for 15 min. No dielectric breakdown phenomenon of the films is detected in the filed of 500 kV/cm, and the leakage current density was lower than 10-6 A/cm2. The dielectric constant can attain to 307, and the loss factor is 0.02 at 1 kHz. The residual polarization and coercive field are 3.7 μC/cm2 and 80 kV/cm with a sinusoidal wave of 500 Hz, respectively. The optical transmittance of the film is close to 100% at the wavelength of 550 nm.
Scanning electronic microscopy (SEM) observation reveals that the microstructures, grain sizes and thicknesses of the thin films strongly dependent on the substrates, that is, the Pt/Ti/SiO2/Si substrate provides a more suitable interface layer than ITO/glass substrate for the growth of Bi4Ti3O12 thin films. The energy dispersive spectrometer (EDS) results indicate that the Bi/Ti atomic ratio of the films is less than that of target, which suggests that evaporation loss of bismuth occurs during the heating process. Whereas, this phenomenon occurs near the surface of thin film, it is not apparent in the inner of film. Excess 4wt% Bi2O3 additive in the target or additional Bi2O3 powder in the annealing process can compensate the loss of bismuth in the films, and improve the characteristics of thin films. Finally, the interdiffusion and chemical reactions take place among the element Bi, S and O at the interface during the deposition of ZnS:TbOF on Bi4Ti3O12 films, which degrades the optical transmittance of thin films. A 100 nm SiO2 buffer layer sandwiched between the ZnS:TbOF and Bi4Ti3O12 films can prevent the interdiffusion of the two layers, and enhance the optical transmittance and dielectric breakdown of Bi4Ti3O12 films.
目次 Table of Contents
Chapter 1 Introduction…………………………………1
1.1General background………………………….1
1.2Thesis construction…………………………3
Chapter 2 Theory……………………………………….5
2.1 Dielectric properties………………………………5
2.1.1 Capacitance…………………………………………5
2.1.2 Polarization………………………………………6
2.1.3 Four polarization mechanisms…………………6
2.1.4 Dielectric loss…………………………………..8
2.2 Ferroelectricity……………………………………..9
2.2.1 Ferroelectric characteristics..............9
2.2.2 Perovskite and phase transform...............10
2.3 Structure and properties of Bi4Ti3O12….……11
2.3.1 Structure……………………………………………11
2.3.2 Properties.................................12
2.4 ACTFEL device and phosphor properties of ZnS:Tb,F …13
2.4.1 AC thin film electroluminescence device structure...13
2.4.2 EL emission mechanism.......................13
2.4.3 ZnS:Tb,F phosphor material...................14
2.4.4 Requirement of insulting layer...............15
2.5 Physical vapor deposition………………………….16
2.5.1 Evaporation…………………….……………………16
2.5.2 Sputtering………………………………………….17
Chapter 3 Experiments……………………………...19
3.1 Fabrication of Bi4Ti3O12 thin film………………19
3.1.1 Target fabrication…………………………………19
3.1.2 Substrates cleaning……………………19
3.1.3 DC sputtering of Ti and Pt thin films………20
3.1.4 RF sputtering of Bi4Ti3O12 thin film…………21
3.1.5 Annealing…………………………….21
3.1.6 Deposition of ZnS:TbOF.………………………22
3.1.7 Plasma-enhanced chemical vapor deposition for SiO2…22
3.1.8 Al electrode evaporation…………………………………23
3.2 Characterization of thin film……………………………23
3.2.1 XRD analysis……………………………………………23
3.2.2 SEM observation and EDS analysis………………23
3.2.3 SIMS analysis…………………………………………23
3.2.4 Optical transmittance…………………………….24
3.3 Electrical properties measurement…………………24
3.3.1 C-V measurement………………………………………24
3.3.2 I-V measurement……………………………………24
3.3.3 P-E measurement………………………………………25
Chapter 4 Results and discussion………………………26
4.1 The characteristics of the thin films with different fabrication conditions............................26
4.1.1 Fabrication parameters……………………………26
4.1.2 Composition of targets……………………………28
4.1.3 Influence of Substrate…………………………..31
4.2 Bismuth evaporation during heating process and compensation methods…..........................33
4.2.1 Bismuth evaporation……………………33
4.2.2 Bismuth compensation………………………………36
4.3 The characteristics of ZnS:TbOF thin film on Bi4Ti3O12/ITO/Glass…......................41
4.3.1 Depositing ZnS:TbOF on Bi4Ti3O12…………41
Chapter 5 Conclusion…………………………………46
References………………………………………………49
參考文獻 References
[1]X. H. Du and B. Sheu, IEEE circuit & device magazine Nov. (2002) 10
[2]A. Sheikholeslami and P. G. Gulak, Proc. IEEE, 88 May (2000) 667.
[3]B. Prince, Emerging Memories, Technologies and Trends. Norwell, MA (2002) 52.
[4]B. Y. Lee, L. G. Kim and S. W. Cho, Thin Solid Films 302 (1997) 25.
[5]M. H. Song, Y. H. Lee and T. S. Hahn, Solid-State Electron. 42 (1998) 1711.
[6]W. F. Yao, H. Wang, X. H. Xu and S. X. Shang, Mater. Lett. 57 (2003) 1899.
[7]J. Ohwaki, O. Kogure and B. Tsujiyama, Rev. Electron Comm. Lab. 35 (1987) 741.
[8]M. Yokoyama, Soc. Automotive Eng. Int. Congress. Detroit, (1988) 47.
[9]Y. A. Ono, Electroluminescent Display (World Scientific, Singapore, 1995) Chap. 1,3,4,5.
[10]K. Okamoto, Ph.D. thesis (Osaka University, 1981).
[11]H. Kobayashi, S. Tanaka, V. Shanker, M. Shiiki, T. Kunou, J. Mita and H. Sasakura, Appl. Phys. Lett. 48 (1986) 1570.
[12]Y. Hamakawa, R. Fukao and H. Fujikawa, Optoelectronics-Devices and Technol. 3 (1988 ) 31.
[13]M. H. Song, Y. H. Lee, T. S. Haha and M. H. Oh, J. Appl. Phys. 79 (1996) 3744.
[14]P. Li and T. M. Lu, Appl. Phys. Lett., 59 (1991) 1064.
[15]J. Cheng and Z. Meng, Thin Solid Films, 385 (2001) 5.
[16]X. J. Meng, J. G. Cheng, J. L. Sun, J. Tan, H. J. Ye and J. H. Chu, Thin Solid Films, 368 (2000) 22.
[17]A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A. S. Bahalla and L. E. Cross, J. Phys. and Chem. Solids, 61 (2000) 191.
[18]J. Y. Ha, J. W. Choi, C.Y. Kang and S.F. Karmanenko, Jpn. J. Appl. Phys. 44, (2005) L1196.
[19]T. Takenka and K. Sakata, Jpn. J. Appl. Phys. 19 (1980) 31.
[20]L. Pintitlie, I. Pintilie and M. Alexe, J. Europ. Ceram. Soc. 19 (1999) 1473.
[21]S. Okamura, Y. Yagi and K. Mori, Proc. of the 10th IEEE International Symposium on Application of Ferroelectrics, 1 (1996) 463.
[22]D. Damjanovic, M. Demartin, H. S. Shulman, M. Testorf and N. Setter, Sensor & Actuators, A53 (1996) 353.
[23]Z. G. Hu, S. W. Wang, Z. M. Huang, G.. S. Wang, Z. H. Zang and W. Lu, Thin Solid Films, 440 (2003) 190.
[24]D. Wu, A. Li and N. Ming, Microelectronic Engineering, 66 (2003) 773
[25]E. B. Araujo and J. A. Eiras, J. Europ. Ceram. Soc., 19 (1999) 1453.
[26]Y. Shi, C. Cao and S. Feng, Mater. Lett., 46 (2000) 270.
[27]S. W. Wang, W. Lu, N. Li, Z. F. Li, H. Wang, M. Wang and X. C. Shen, Mater. Res. Bull., 37 (2002) 1691.
[28]G. D. Hu, J. B. Xu, I. H. Wilson, W.Y. Cheung, N. K. Chan and P. S. Wong, Proc. of the 11th IEEE International Symposium on Application of Ferroelecrics, (1998) 163.
[29]X. S. Wang, J. W. Zhai, L, Y. Zhang and X. Yao, Infrared Physics & Technol., 40 (1999) 55.
[30]T. Kijima and H. Matsunaga, Jpn. J. Appl. Phys. 38 (1999) 2281.
[31]R. Muhamment, T. Nakamura, M. Shimizu and T. Shiosaki, Jpn. J. Appl. Phys. 33 (1994) 5215.
[32]K. Yoshimura, M. Ishinabe, S. Okamura and T. Tsukamoto, Jpn. J. Appl. Phys. 34 (1995) 2425.
[33]S. Migita, H. Ota, H. Fujino, Y. Kasai, S. Sakai, J. Cryst. Growth, 200 (1999) 161.
[34]H. Maiwa and N. Ichionse, Proc. of the 10th IEEE International Symposium on Application of Ferroelectrics, (1996) 455.
[35]H. Masumoto, T. Goto, Y. Masuda, A. Baba and T. Hirai, Appl. Phys. Lett., 58(3) (1991) 243.
[36]M. Noda, T. Nakaiso, K. Takarabe, K. Kodama, M. Okuyama, J. Crystal Growth, 273 (2002) 478.
[37]H. Sugiyama, T. Nakaiso, Y. Adachi, M. Noda and M. Okuyama, Jpn. J. Appl. Phys., 38 (2000) 2131.
[38]M. Yamaguchi, T. Nagamoto and O. Omoto, Thin Solid Films, 300 (1997) 299.
[39]W. J. Takei, N. P. Formigoni and M. H. Francombe, J. Vac. Sci Technol., 7 (1970) 442.
[40]K. Sugibuchi, Y. Kurogi and N. Endo, J. Appl. Phys., 46 (1975) 2877.
[41]A. N. Krasnov, Progress Crystal Growth & Characterization of Materials, 37 (1998) 123.
[42]D. Q. Xiao, Ceramic material (Xin Wen-Jing, Taipei, 2003) Ch.3.
[43]W. D. Kingery, H. K. Bowen, D. R. Uhlman “Introduction to Ceramic” (Wiley, New York, 1976) Ch. 18.
[44]Y. H. Xie, Electronic Material (Xin Wen-Jing, Taipei, 2003 ) Ch.7.
[45]L. Wu, Fundamentals of Electronic Ceramic (Quan-Xin, Taipei, 1992) p159-162.
[46]M. Barsoum, Fundamentals of Ceramics”, (McGraw-Hill, Singapore, 1997) Chap. 14.
[47]J. M. Wang, Ceramic Technology, (Chinese Power and Metallurgy Society, Taipei, 1994) Ch. 13.
[48]Q. X. Jia, L. H. Chang and W. A. Anderson, Thin Solid Films, 259 (1995) 264.
[49]P. C. Jodhi and S. B. Desu, Thin Solid Films, 300 (1997) 289.
[50]E. K. Evangelou, N. Konogaos, X. Aslanoglou, S. Kennou and C. B. Tomas, Mater. Sci. Semi. Proces., 4 (2001) 305.
[51]T. S. Kim, M. H. Oh and C. H. Kim, Thin Solid Films, 254 (1995) 273.
[52]C. L. Mak, C. H. Luk and K.H. Wong, Thin Solid Films, 325 (1998) 79.
[53]Aurivillus, Arkiv Kemi, 1 (1949) 463.
[54]Aurivillus, Arkiv Kemi, 2 (1950) 519.
[55]J. Meng and Y. Huang, Solid State Communications, 97 (1996) 887.
[56]E. C. Subbarao, Phys. Rev., 122 (1961) 804.
[57]E. C. Subbarao, J. Phys. Chem. Solids, 23 (1962) 665.
[58]R. E. Nuwnham, R. W. Wolfe, J. E. Dorrian, Mater. Res. Bull., 6 (1971) 1029.
[59]Z. S. Macedo and A. C. Hernandes, Mater. Lett., 55 (2002) 217.
[60]W. F. Yao, H. Wang, X. H. Xu, S. X. Shang, Y. Hou, Mater. Lett., 57 (2003) 1899.
[61]S. E Cummins, L. E. Cross, Appl. Phys. Lett. 10 (1967) 14.
[62]T. Hirata and T. Yokokawa, Solid State Communications, 104 (1997) 673.
[63]T. Thongtem and S. Thongtem, Ceramics International, 30 (2004) 1463.
[64]M. J. Wang, Master thesis (National Cheng Kung University, 2002).
[65]Y. M. Sun, Y. C. Chen, J. Y. Gan and J. C. Hwang, Appl. Phys. Lett., 81 (2002) 3221.
[66]F. Hou and M. Shen, Mater. Sci. & Eng. B, 122 (2005) 164.
[67]A. Z. Simoes, C. S. Riccardi, C. Quinelato, A. Ries, E. Longo and J. A. Varela, Mater. Sci. & Eng. B, 113 (2004) 207.
[68]M. Yamaguchi, Takao Nagatomo and O. Omoto, Jpn J. Appl. Phys. 36 (1997) 5885.
[69]W. Jo, S. M. Cho, H. M. Lee, D. C. Kim and J. U. Bu, Jpn J. Appl. Phys. 38 (1999) 2827.
[70]Y. M. Sun, Y. C. Chen, J. Y. Gan and J. C. Hwang, Jpn. J. Appl. Phys. 41 (2002) L892.
[71]H. Wang, Mater. Sci. & Eng. B, 111 (2004) 64.
[72]T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nataka and M. Yoshida, Digest of 1974 SID International Symposium, (1974) 84.
[73]S. H. Su, Ph.D. thesis (National Cheng Kung University, 1998)
[74]J. W. Li, Ph.D. thesis (National Cheng Kung University, 1995).
[75]C. T. Hsu, J. W. Li, C. H. Liu,Y. K. Su and M. Yokoyama, J. Appl. Phys. 71 (1992) 1509.
[76]J.W. Li, Y. K. Su and M. Yokoyama, Jpn. J. Appl. Phys. 32 (1993) 3598.
[77]S. Gupta, J. C. McClure and V. P. Singh, Thin Solid Films, 299 (1997) 33.
[78]O. Kanehisa, M. Shiiki, T. Uenae, J. Alloys & Compounds, 223 (1995) 154.
[79]C. W. Wang, J. Y. Liao, Y. K. Su and M. Yokoyama, IEEE Transactions Electron Devices, 45 (1998) 757.
[80]A. N. Krasnov, Thin Solid Films, 347 (1999) 1.
[81]M. H. Song, Y. H. Lee, T. S. Hahn, M. H. Oh and K. H. Yoon, Solid-State Electronics, 42 (1998) 1711.
[82]K. Okamoto, Y. Nasu and Y. Hamkawa, IEEE Transactions Electron Device, 28 (1981) 698.
[83]H. Ohnishi, K. Okamoto, IEEE 1988 International Display Research Conference, (1998) 32.
[84]D. J. Zhuang, VLSI Fabrication Technology (Kao-Li, Taipei, 1995) Ch.5.
[85]H. Xiao, Introduction of Semiconductor Fabrication Technology, (Prentice Hall, 2002) Ch.7.
[86]J. Takahashi, S. Kawano, S. Shimada and K. Kageyama, Jpn. J. Appl. Phys. 38 (1999) 5493.
[87]S. S. Chen, Master thesis (National Cheng Kung University, 1995).
[88]S. J. Zheng, Master thesis (National Cheng Kung University, 1996).
[89]Y. C. Wang, Master thesis (National Cheng Kung University, 1997).
[90]J. M. Wang, Materials Analysis (Chinese Material Science Society, 1998) Ch 2,3,4,6,14.
[91]H. Diamant, K. Drenck and R. Pepinsky, Rev. Scientific Instruments, 28 (1957) 30.
[92]T. J. Bukowski, T. P. Alexander, D. R. Uhlmann, G. Teowee and K. C. McCatrthy, Proc. of the 10 th IEEE International Symposium on Application of Ferroelectrics, (1996) 163.
[93]L. B. Kong, J. Ma, Thin Solid Films, 379 (2000) 89.
[94]T. Kijima, M. Nagata and H. Matsunaga, Proc. of the 10 th IEEE International Symposium on Application of Ferroelectrics, (1996) 323.
[95]Y. N. Oh, S. G. Yoon, Appl. Surf. Sci., 227 (2004) 187.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code