Responsive image
博碩士論文 etd-0731106-174329 詳細資訊
Title page for etd-0731106-174329
論文名稱
Title
一有加強浮體效應之單電晶體隨機存取記憶體1T DRAM 單元
A new 1T DRAM Cell With Enhanced Floating Body Effect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-31
關鍵字
Keywords
浮體效應、單電晶體隨機存取記憶體、屈膝效應
1T DRAM, floating body effect, kink effect
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
近年來半導體工業朝向發展體積小、低消耗功率、低漏電流以及高操作速度的元件與系統發展。 SOI 元件為新興的半導體技術具有許多獨特的特性,是朝此方向發展最有希望的技術之ㄧ。而在半導體記憶體方面,利用PD-SOI nMOSFET的浮體效應所做成的單電晶記憶體可以使記憶體的面積大大的縮小。在本篇論文我們提出一新結構的 1T DRAM cell , 此元件可利用其環繞在 body 四周特有的BLOCK OXIDE來降低元件集級/源極與本體間的接面電容。並且利用此元件結構上的特性,可以大大提升 DRAM cell 的 programming 達80 % 以上。


在製程上,我們運用NDL(國家奈米實驗室)的機台設備來實際做出這項元件。在製作上技術上,我們並非用SOI 晶圓去完成我們新架構的元件而是直接在bulk的晶片上成長buried oxide後再沉積出Si薄膜,以類似 TFT(thin film transistor )的方法來完我們的元件,但自行沉積完成的矽薄膜層是由許多不同 Crystal Orientation 的 Single Crystal of Silicon Grains 所組成之純矽物質,所以有著比單晶矽薄層更多的晶格間隙跟不固定的能階,在品質跟薄膜厚度上都比較不穩定,邊晶現象會相當嚴重,所以元件製作的失敗率較高,但我們還是成功製作出此元件。因此如果能廣泛將元件以這種類似TFT的形式完成,由於不需要使用SOI 晶圓 ,則可大大降低成本。
Abstract
Recently the semiconductor industry tends to develop a smaller volume device and system with lower power consumption, lower leakage current, and high speed performance. SOI technology having many unique characteristics is one of the most hopeful methods in the direction. As semiconductor memory is concerned, The 1T-DRAM cell realized by the concept of floating body effect in a PD-SOI nMOSFET, that can allow DRAM cell to be scaled down in depth with less area occupied .In this paper, we will propose a new structure of 1T-DRAM cell, which has the buried oxide and block oxide around its body. It can suppress the junction capacitor between the S/D and the body of the cell. In addition it can also improve the programming window of the 1T-DRAM cell more than 80% by utilizing its own structural characteristic.

We fabricated our new device in National Nano Device Laboratories. The device was carried out by depositing oxide and poly film on bulk Si wafer, just like TFT process. But doing by this way it has some issues about the polycrystalline channel and the S/D. Although it has some issues, but we made it successful using bulk Si wafer rather than expensive SOI wafer. It indeed reduces the cost of process.
目次 Table of Contents
第一章 緒論 1
第二章 現有 SOI CAPACITOR-LESS DRAM 元件的種類與概述 4
2-1 CAPACITOR LESS DRAM (CDRAM) 4
2-2 Double gate 1T DRAM cell 6
2-3 GATE INDUCED DRAIN LEAKAGE (GIDL) 1T DRAM CELL 7
2-4 FLOATING BODY 1T DRAM CELL (FBC) 9
2-5 Twin transistor random access memory (TTRAM) 12

第三章 新元件結構的模擬 14
3-1 四種元件(CMP-BMPI DEP-BMPI CMP-BSOI DEP-BSOI)結構說明 14
3-2 四種元件(CMP-BMPI DEP-BMPI CMP-BSOI DEP-BSOI)的電性模擬15
3-3 新元件架構的探討分析 21
3-4 變化結構參數比較整理與結論 22
第四章 新元件結構的設計與製作 27
4.1 製作BMPI BODY 27
4.2 製作BMPI BLOCK OXIDE 34
4.3 製作BMPI SOURCE與 DRAIN 36
4.4 元件隔離及完成主動區域 37
4.5 製作BMPI GATE 與 GATE OXIDE 39
4.6 製作Contact Hole 42
4.7 製作金屬層 44

第五章 實驗結果量測與討論 46
5-1 IDS - VDS 特性曲線 47
5-2 結論 50
第六章 結論與未來發展 52

Reference 53
附錄 A: 投稿的會議論文 57
參考文獻 References
[1] Fujii, E.; Uemoto, Y.; “ULSI DRAM Technology with Bag 0.7Sr0. 3TiO3 Film of 1.3 nm Equivalent SiO2 Thickness and 10+A/cm2 Leakage Current ”IEDM 1992
[2] Zheng, L.; Ping, A. E.;“Metal-insulator-Si (MIS)structure for advanced DRAM cell capacitor” Microelectronics and Electron Devices, 2004 IEEE Workshop on 2004
[3] Yoon, S.; Kwon, O.; Yoon, S.; Won, T.; “An extracting capacitance in a stacked DRAM cell by numerical method” Simulationof Semiconductor Processes and Devices, 2000. SISPAD 2000. 2000International Conference on 6-8 Sept. 2000
[4] Motoyoshi, M.; Kano H.; “Ways of achieving high-performance MRAMs” VLSI Technology, 2005. (VLSI-TSA-Tech). 2005 IEEE VLSI-TSA International Symposium on 25-27 April
[5] Lai S.; Lowrey T.; “OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications” Electron Devices Meeting, 2001. IEDM Technical Digest. International
2-5 Dec. 2001
[6] Okhonin, S.; Nagoga, M.; Sallese, J.M.; Fazan, P.; “A capacitor-less 1T-DRAM cell” Nanotechnology, IEEE Transactions on Volume 4, Issue 6, Nov. 2005
[7] Fazan, P.; Okhonin, S.; Nagoga, M.; Sallese, J.M.; Portmann, L.; Ferrant, R.; Kayal, M.; Pastre, M.; Blagojevic, M.; Borschberg, A.; Declercq, M.; “Capacitor-less 1-transistor DRAM” SOI Conference, IEEE International 2002
7-10 Oct. 2002
[8] Ohsawa, T.; Fujita, K.; Higashi, T.; Iwata, Y.; Kajiyama, T.; Asao, Y.; Sunouchi, K.; “Memory design using a one-transistor gain cell on SOI” Solid-State Circuits, IEEE Journal of
Volume 37, Issue 11, Nov. 2002
[9] Fazan, P.; Okhonin, S.; “A CMOS Compatible Low Power Ultra Dense Capacitor Less SOI RAM” Semiconductor Device Research Symposium, International 2003
[10] Jing Guo and Mark S. Lundstrom; “A Computational Study of Thin-Body, Double-Gate, Schottky Barrier MOSFETs” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 11, NOVEMBER 2002


[11] Dunga, M.V.; Kumar, A.; Ramgopal Rao, V.; “Analysis of floating body effects in thin film SOI MOSFETs using the GIDL current technique” Physical and Failure Analysis of Integrated Circuits, 2001. IPFA 2001. Proceedings of the 2001 8th International Symposium on the 9-13 July 2001
[12] Yang, R.; Li, J.F.; Qian, H.; Han, Z.S; “An asymmetrical source/drain junction structure for SOI RFIC: immune to floating body effects” Junction Technology, 2004. IWJT '04. The Fourth International Workshop on 15-16 March 2004
[13] Shin, H.C.; Ik-Sung Lim; Racanelli, M.; Wen-Ling Margaret Huang; Foerstner, J.; Bor-Yuan Hwang; “Analysis of floating body induced transient behaviors in partially depleted thin film SOI devices” Electron Devices, IEEE Transactions on Volume 43, Issue 2, Feb. 1996
[14] Terauchi, M.; Yoshimi, M.; Marakoshi, A.; Ushiku, Y.; “Suppression of the floating-body effects in SOI MOSFETs by bandgap engineering” VLSI Technology, 1995. Digest of Technical Papers. 1995 Symposium on 6-8 June 1995
[15] Yoshimi, M.; Terauchi, M.; Nishiyama, A.; Arisumi, O.; Murakoshi, A.; Matsuzawa, K.; Shigyo, N.; Takeno, S.; Tomita, M.; Suzuki, K.; Ushiku, Y.; Tango, H; “Suppression of the floating-body effect in SOI MOSFET's by the bandgap engineering method using a Si1-xGex source structure” Electron Devices, IEEE Transactions on Volume 44, Issue 3, March 1997
[16] Date, C.K.; Plummer, J. D ; “Suppression of the floating-body effect using SiGe layers in vertical surrounding-gate MOSFETs” Electron Devices, IEEE Transactions on Volume 48, Issue 12, Dec. 2001
[17] Nishiyama, A.; Arisumi, O.; Yoshimi, M.; “Mechanism of the suppression of the floating-body effect for SOI MOSFETs with SiGe source structure” SOI Conference, 1996. Proceedings., 1996 IEEE International 30 Sept.-3 Oct. 1996
[18] Po-Yi Kuo; Tien-Sheng Chao; Tan-Fu Lei; “Suppression of the floating-body effect in poly-Si thin-film transistors with self-aligned Schottky barrier source and ohmic body contact structure” Electron Device Letters, IEEE Volume 25, Issue 9, Sept. 2004
[19] Sleight, J.; Mistry, K.; “A compact Schottky body contact technology for SOI transistors” Electron Devices Meeting, 1997. Technical Digest., International 7-10 Dec. 1997
[20] Shiao-Shien Chen; Shiang Huang-Lu; Tien-Hao Tang“Direct tunneling-induced floating-body effect in 90-nm pseudo-kink-free PD SOI pMOSFETs with DTMOS-like behavior and low input power consumption” Electron Devices, IEEE Transactions on Volume 51, Issue 4, April 2004
[21] Krishnan, S.; Fossum, J.G; “Grasping SOI floating-body effects” Circuits and Devices Magazine, IEEE Volume 14, Issue 4, July 1998
[22] Abo, S.; Mizutani, M.; Nakayama, K.; Takaoka, T.; Iwamatsu, T.; Yamaguchi, Y.; Maegawa, S.; Nishimura, T.; Kinomura, A.; Horino, Y.; Takai, M.; “Instability study of partially depleted SOI-MOSFET due to floating body effect using high energy nuclear microprobes” Ion Implantation Technology, 2000. Conference on 17-22 Sept. 2000
[23] Hsing-jen Wann and Chenming Hu,; “A Capacitorless DRAM Cell on SOI Substrate” IEDM 1993
[24] Charles Kuo, Tsu-Jae King,; “A Capacitor less Double Gate DRAM Technology for Sub-100-nm Embedded and Stand-Alone Memory Applications” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 12, DECEMBER 2003
[25] Charles Kuo, ; Tsu-Jae King,; “A Capacitor less Double-Gate DRAM Cell” IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 6, JUNE 2002
[26] Eiji Yoshida, Tetsu Yanaka,; “A Design of a Capacitor less 1T-DRAM Gate-induced Drain Leakage Current for Low-power and High-speed Embedded Memory” IEDM 2003
[27] Takashi Ohsawa, Katsuyuki Fujita,; “Memory Design Using aOne-Transistor Gain Cell on SOI” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 11, NOVEMBER 2002
[28] Tomoki Shino, Tomoko Higashi,; “Hightly Scalable FBC (Floating Body Cell)with 25 nm BOX Structure for Embedded DRAM Applications” Symposia on VLSI Technology Digest of Technical Papers 2004
[29] Morishita, F.; Noda, H.; Gyohten, T.; Okamoto, M.; Ipposhi, T.; Maegawa, S.; Dosaka, K.; Arimoto, K.; “A capacitor less twin-transistor random access memory (TTRAM) on SOI” Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 200518-21 Sept. 2005
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.174.168
論文開放下載的時間是 校外不公開

Your IP address is 18.191.174.168
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code