Responsive image
博碩士論文 etd-0731107-205532 詳細資訊
Title page for etd-0731107-205532
論文名稱
Title
以分子動力學研究芳香族羧酸分子於金基板表面之動態行為
Investigation on the dynamical behaviors of aromatic carboxylic acid molecules on an Au surface by molecular dynamics simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-19
繳交日期
Date of Submission
2007-07-31
關鍵字
Keywords
分子動力學、三羧酸衍生物、物理吸附
Molecular dynamics, Tricarboxylic acid derivatives, Physisorbed
統計
Statistics
本論文已被瀏覽 5704 次,被下載 2121
The thesis/dissertation has been browsed 5704 times, has been downloaded 2121 times.
中文摘要
本文藉由全原子模型的分子動力學模擬,研究三羧酸衍生物(tricarboxylic acid derivatives)之1,3,5-tris(carboxymethoxy) benzene(TCMB, C6H3(OCH2COOH)3)於金表面的動態行為。首先針對單一個三羧酸衍生物吸附於Au(111)表面所產生之形貌圖形作一探討,可發現該分子在金表面會形成四種不同構形(conformations),且分子上之官能基與基板會產生鎖與鑰匙(Lock-and-Key)效應,進而使分子能更穩定的存在於基板上,故鎖與鑰匙效應更會使分子的擴散及轉動行為受到限制。單一個三羧酸衍生物置於Au(100)及Au(110)等不同排列表面時,可發現該分子吸附於排列結構相異之表面後,其擴散的方向也會有所差異,由軌跡圖的觀察可得知分子置於(100)平面時容易沿<110>方向移動,為各排列基板中擴散範圍最廣的一種,而當分子置於(110)平面時,則容易沿[1&#299;0]方向移動。
由於以上的研究發現分子構形的不同及基板表面不同將直接影響分子在基板上的運動行為,因此為更深入了解三羧酸衍生物分子於基板上形成薄膜時之運動特性,本文更深入討論三羧酸衍生物分子單層膜於不同溫度下吸附在Au(111)表面的運動行為,在升溫過程中經由分子間吸附能(Cohesive energy)及分子與Au(111)基板間吸附能的計算,可發現吸附能在某些特定溫度下會產生明顯變化,並可經由結構上的觀察發現單層膜在此特定溫度下,會產生明顯變形及破壞,最後並藉由均方位移(MSD)、擴散係數(D)、金與單層膜間距及吸附能之統計,針對三羧酸衍生物單層膜在某些特定溫度下,分別探討單層膜移動行為及單層膜擴散性質。
Abstract
The dynamical behaviors of tricarboxylic acid derivative, 1,3,5-tris(carbox- ymethoxy) benzene[TCMB, C6H3(OCH2COOH)3] on an Au surface is investigated by molecular dynamics. A TCMB molecule adsorbed on the Au(111) substrate is first probed into the structure arrangement. It founds that there are four possible conformations of the TCMB molecule that is adsorbed on the Au(111) substrate. The main difference on its conformation is the orientation of its functional group, which lead the molecule that forms the lock-and-key (LAK) behavior and prompts the molecule that become more stable on the substrate. As this result, the LAK behavior directly affects the trajectories of movement and dynamical behaviors.
Another topic is to observe the behavior of TCMB molecule on Au(110) and Au(100) surface, respectively. As well as the result of the TCMB molecule adsorbed on the Au(111) substrate, it also shows a different behavior on dynamical behaviors when the TCMB molecule adsorbed on the Au(110) and Au(100) substrate. Moreover, we found that the diffusion direction of TCMB molecule is dependent on the arrangement of the adsorbed surface. From the observation of the trajectory of the TCMB molecule, we found that diffusion range is most wide on Au(100) plane. The translational direction of TCMB molecule tend to move on the <110> direction as the molecule is migrate on the Au(100) plane, whereas that tend to move on the [1&#299;0] direction as the molecule is migrate on the Au(110) plane.
From the description above, we know that TCMB molecule with different conformations on different plane of surface arrangement displays different trajectories of movement and dynamical behaviors. Therefore, in order to understand the dynamical behaviors of TCMB monolayer on gold surface. In this work, the temperature effect on the adsorption behavior and the dynamic behavior of TCMB monolayer structure on the Au(111) substrate are investigated. From the calculation of the cohesive energy between molecules and the interaction energy between the molecule and the Au(111) substrate, we found that there are significant changes in cohesive energy and interaction energy at specific temperatures, which can be attributed to the deformation of the monolayer structure. Finally, the mean square displacement (MSD), diffusion coefficient(D) and distance between the molecule and the Au(111) substrate are calculated to investigate the diffusion property and motion behavior of TCMB monolayer at specific temperatures.
目次 Table of Contents
目錄
目錄 I
圖目錄 IV
表目錄 VII
中文摘要 VIII
英文摘要 IX
符號說明 XI

第一章 緒論 1
1.1 研究動機與目的 2
1.2 有序薄膜之製程方法 5
1.3 文獻回顧 9
1.4 本文架構 10
第二章 分子動力學理論方法 11
2.1 運動方程式 12
2.2 積分法則 13
2.3 勢能函數 14
2.3.1. 三羧酸衍生物分子之作用勢能 14
2.3.2. 金原子間作用勢能 17
2.3.3. 三羧酸衍生物與金原子間之作用勢能 19
2.4 時間步階選取 20
2.5 溫度修正 21
2.5.1. 反正規化法(Rescaling method) 21
2.5.2. 諾斯-胡佛恆溫法(Nos&eacute;-Hoover thermostat) 22
2.6 週期性邊界的處理 24
第三章 分子動力學數值方法 25
3.1 節省模擬時間之方法 25
3.1.1. 截斷半徑法(Cut-off method) 25
3.1.2. 維理表列法(Verlet List) 26
3.1.3. 巢室表列法(Cell Link) 28
3.1.4. 維理表列結合巢室表列法 30
3.2 物理參數與無因次化 32
3.3 數值統計方法 34
3.3.1. 平方位移(Square Displacement) 34
3.3.2. 平均平方位移(Mean Square Displacement) 34
3.3.3. 擴散係數(Diffusion Coefficients) 35
3.4 模擬流程圖 36
3.4.1. 單一的三羧酸衍生物於金表面系統之流程圖 36
3.4.2. 三羧酸衍生物單層膜於金表面系統之流程圖 37
第四章 結果分析與討論 38
4.1 分子於Au(111)表面的結構與性質 38
4.1.1. 物理模型之建構 38
4.1.2. 結構特性 41
4.1.3. 吸附性質 41
4.1.4. 運動行為 43
4.2 分子於不同排列基板之影響 54
4.2.1. 結構特性 54
4.2.2. 運動行為 55
4.2.3. 吸附性質 57
4.3 三羧酸衍生物單層膜受不同溫度之影響 64
4.3.1. 三羧酸衍生物單層膜構形改變 64
4.3.2. 單層膜移動行為及擴散性質 65
4.3.3. 單層膜之吸附性質 67
第五章 結論與建議 74
5.1 結論 74
5.2 建議與未來展望 77
參考文獻 References
1. J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness and P. H. Beton. “Controlling molecular deposition and layer structure with supramolecuar surface assemblies”, Nature 424, 1029-1031 (2003).
2. E. Vamvakopoulos, D. G. Papageorgiou, G. A. Evangelakis. “Solidification of Pb overlayer on Cu(111) surface by molecular dynamics simulation”, Thin Solid Films 485, 290-295(2005).
3. S. Stepanow, M. Lingen- felder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth and K. Kern. “Steering molecular organization and host-guestinteractions using two-dimensional nanoporous coordination systems”, Nature 3, 229-233(2004).
4. P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, K. Kern. “Direct Observation of Chiral Metal-Organic Complexes Assembled on a Cu(100) Surface”, J. AM. Chem. 124, 14000-14001(2002).
5. A. Dmitriev, H. Spillmann, M. Lingenfelder, N. Lin, J. V. Barth, and Kern, K. “Design of Extended Surface-Supported Chiral Metal-Organic Arrays Co- mprising Mononuclear Iron Centers”, Langmuir 20, 4799-4801 (2004).
6. J. Zhang, A. G.esqui&egrave;re, M. Sieffert, M. Klapper, K. M&uuml;llen, F. C. D. Schryver, and S. D. Feyter. “Losing the Expression of Molecular Chirality in Self-Assembled Physisorbed Monolayers”, Nano Lett. 5, 1395-1398(2005).
7. A. Miura, S. D. Feyter, M. M. S. Abdel-Mottaleb, A. Gesqui&egrave;re, P. C. M. Grim, G. Moessner, M. Sieffert, M. Klapper, K. M&uuml;llen, and F. C. D. Schryver. “Light- and STM-Tip-Induced Formation of One-Dimensional and Two- Dimensional Organic Nanostructures”, Langmuir 19, 6474-6482 (2003).
8. L. Merz, J. Hitz, U. Hubler, P. Weyermann, F. Diederich, P. Murer, D. Seebach. “STM Investigation on Single, Physisorbed Dendrimers”, Single Mol. 3, 295- 299(2002).
9. P. Cifra. “Adsorption Profiles of Long-Chain Polymer in Semidilute Solutions Phy- sisorbed to a Wall”, Macromol. Theory Simul. 12, 270-275(2003).
10. T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko. “Selective assembly on a surface of supramolecular aggregates with con- trolled size and shape”, Nature 413, 619-621(2001).
11. B. Krause, K. Diekmann, N. F. A. Van der Vegt, M. Wessling. “Open Nanoporous Morphologies from Polymeric Blends by Carbon Dioxide Foaming”, Macromolecules 35, 1738-1745(2002).
12. C. R. Martin. “Membrane-Based Synthesis of Nanomaterials”, Chem. Mater. 8, 1739-1746(1996).
13. Y. H. Jang, S. Hwang, Y. H. Kim, S. S. Jang, and W. A. Goddard. “Density Functional Theory Studies of the [2]Rotaxane Component of the Stoddart-Heath Molecular Switch”, J. Am. Chem. Soc. 126, 12636-12645 (2004).
14. R. Otero, M. Sch&ouml;ck, L. M. Molina, E. L&aelig;gsgaard, I. Stensgaard, B. Hammer, and F. Besenbacher. “STM Studies of Hydrogen-Bonded DNA Base Aggregates”, Phantoms Newsletter. 17 (2004).
15. R. L. Carroll, and C. B. Gorman. “The Genesis of Molecular Electronics”, Angew. Chem. Int. Ed. 41, 4378-4400(2002).
16. C. Joachim, J. K. Gimzewski, and A. Aviram. “Electronics using hybrid-molecular and mono-molecular devices”, Nature 408, 541-548(2000).
17. C. P. Collier, E. W. Wong, M. Belohradsk&yacute;, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath. “Electronically Configurable Molecular-Based Logic Gates”, Science 285, 391-394(1999).
18. K. H. Lee, Y. Suh, C. Lee, and Y. G. Hwang. “Investigation of the Scanning Tunneling Microscopy Image, the Stacking Pattern, and the Bias-Voltage-Dependent Structural Instability of 1,10’-Phenanthroline Molecules Adsorbed on Au(111) in Terms of Electronic Structure Calculations”, J. Phys. Chem. B 109, 15322-15326(2005).
19. G. J. Su, H. M. Zhang, L. J. Wan, C. L. Bai, and T. Wandlowski. “Potential-Induced Phase Transition of Trimesic Acid Adlayer on Au (111)”, J. Phys. Chem. B 108, 1931-1937(2004).
20. S. Griessl, M. Lackinger, M. Edelwirth, M. Hietschold, and W. M. Heckl. “Self-Assembled Two-Dimensional Molecular Host-Guest Architectures From Trimesic Acid”, Single Mol. 3, 25-31(2002).
21. S. Sek, A. Tolak, A. Misicka, B. Palys, and R. Bilewicz. “Asymmetry of Electron Transmission through Monolayers of Helical Po- lyalanine Adsorbed on Gold Surfaces”, J. Phys. Chem. B 109, 18433- 18438(2005).
22. T. Cai, Z. Song, J. A. Rodriguez, and J. Hrbek. “Preparation and Structural Characterization of RuS2 Nanoislands on Au (111)”, J. AM. CHEM. SOC. 126, 8886-8887(2004).
23. A. Facchetti, E. Annoni, L. Beverina, M. Morone, P. Zhu, T. J. Marks, and G. A. Pagani. “Very large electro-optic responses in H-bonded heteroaromatic films grown by physical vapour deposition”, Nature materials 3, 910-917(2004).
24. H. Suzuki, T. Yamada, T. Kamikado, Y. Okuno, and S. Mashiko. “Deposition of Thermally Unstable Molecules with the Spray-Jet Techni- que on Au(111) Surface”, J. Phys. Chem. B 109, 13296-13300(2005).
25. A. Dmitriev, N. Lin, J. Weckesser, J. V. Barth, and K. Kern. “Supramolecular Assemblies of Trimesic Acid on a Cu(100) Surface”, J. Phys. Chem. B 106, 6907-6912(2002).
26. S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J. V. Barth, and K. Kern. “Programming Supramolecular Assembly and Chirality in Two- Dimens- ional Dicarboxylate Networks on a Cu(100) Surface”, Nano Lett. 5, 901-904(2005).
27. J. V. Barth, J. Weckesser, G. Trimarchi, M. Vladimirova, A. D. Vita, C. Cai, H. Brune, P. G&uuml;nter, and K. Kern. “Stereochemical Effects in Supramolecular Self-assembly at Surfaces:1-D versus 2-D Enantiomorphic Ordering for PVBA and PEBA on Ag(111)”, J. AM. CHEM. SOC. 124, 7991-8000(2002).
28. M. Bailey, C. J. Brown. “The Crystal Structure of Terephthalic Acid”, Acta Cryst. 22, 387-391(1967).
29. M. &#346;led&#378;, J. Janczak, R. Kubiak. “New crystalline modification of terephthalic acid”, Journal of Molecular Structure 595, 77-82(2001).
30. H. J. Yan, J. Lu, L. J. Wan, and C. L. Bai. “STM Study of Two-Dimensional Assemblies of Tricarboxylic Acid Derivatives on Au(111)”, J. Phys. Chem. B 108, 11251-11255(2004).
31. N. Lin, S. Stepanow, F. Vidal, J. V. Barth, and K. Kern. “Manipulating 2D metal-organic networks via ligand control”, Chem. Commun. 1681-1683(2005).
32. J. Weckesser, A. D. Vita, J. V. Barth, C. Cai, and K. Kern. “Mesoscopic Correlation of Supramolecular Chirality in One-Dimensional Hydrogen-Bonded Assemblies”, Physical Review Letters 87, 096101(2001).
33. I. Lee, and F. Zaera. “Enantioselectivity of Adsorption Sites Created by Chiral 2-Butanol Adsorbed on Pt(111) Single-Crystal Surfaces”, J. Phys. Chem. B 109, 12920-12926(2005).
34. C. D. Lindstrom, D. Quinn, X. Y. Zhu. “Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface”, J. Chem. Phys. 122, 124714(2005).
35. R. Otero, F. H&uuml;mmelink, F. Sato, S. B. Legoas, P. Thostrup, E. L&aelig;gsgaard, I. Stensgaard, D. S. Galv&atilde;o, and F. Besenbacher. “Lock-and-Key effect in the surface diffusion of large organic molecules probed by STM”, Nature 3, 779-782 (2004).
36. S. Clair, S. Pons, A. P. Seitsonen, H. Brune, K. Kern, and J. V. Barth. “STM Study of Terephthalic Acid Self-Assembly on Au(111):Hydrogen- Bonded Sheets on an Inhomogeneous Substrate”, J. Phys. Chem. B 108, 14585-14590(2004).
37. J. V. Barth, H. Brune, and G. Ertl. “Scanning tunneling microscopy observations on the reconstructed Au (111) surface:Atomic structure, long-range superstructure, rotational domains, and surface defects”, Physical Review B 42, 9307-9317(1990).
38. S. Narasimhan, D. Vanderbilt. “Elastic Stress Domains and the Herringbone Reconstruction on Au(111)”, Physical Review Letters 69, 1564- 1567(1992).
39. J. V. Barth, R. J. Behm, and G. Ertl. “Adsorption, surface restructuring and alloy formation in the Na/Au(111) system”, Surface Science 341, 62-91 (1995).
40. F. F. Abraham. “An isothermal-isobaric computer simulation of the supercooled-liquid/ glass transition region:Is the short-range order in the amorphous solid fcc?”, J. Chem. Phys. 72, 359-365(1980).
41. A. Soldera, Y. Grohens. “Cooperativity in stereoregular PMMAs observed by molecular simulation”, Polymer 45, 1307-1311(2004).
42. C. F. Sanz-Navarro, S. D. Kenny, and R. Smith. “Atomistic simulations of structural transformations of silicon surfaces under nanoindentation”, Nanotechnology 15, 692-697(2004).
43. R. Braun, M. Sarikaya, and K. Schulten. “Genetically engineered gold-binding polypeptides:structure prediction and molecular dynamics”, J. Biomaterials Science. Polymer Edition 13, 747-757 (2002).
44. J. Qian, R. Hentschke, W. Knoll. “Superstructures of Cyclodextrin Derivatives on Au(111):A Combined Random Planting-Molecular Dynamics Approach”, Langmuir 13, 7092-7098 (1997).
45. A. R. Bizzarri, B. Bonanni, G. Costantini, S. Cannistraro. “A Combined Atomic Force Microscopy and Molecular Dynamics Simul- ation Study on a Plastocyanin Mutant Chemisorbed on a Gold Surface”, Chemphyschem 4, 1189-1195(2003).
46. A. R. Bizzarri, G. Costantini, S. Cannistraro. “MD simulation of a plastocyanin mutant adsorbed onto a gold surface”, Biophysical Chem. 106, 111- 123(2003).
47. J. Hautman, and M. L. Klein. “Simulation of a monolayer of alkyl thiol chains”, J. Chem. Phys. 91, 4994-5001(1989).
48. Y. H. Jang, S. S. Jang, and W. A. Goddard. “Molecular Dynamics Simulation Study on a Monolayer of Half [2]Rotaxane Self-Assembled on Au(111)”, J. AM. Chem. 127,4959-4964(2005).
49. I. Paci, I. Szleifer, and M. A. Ratner. “Structural Behavior and Self-Assembly of Lennard-Jones Clusters on Rigid Surfaces”, J. Phys. Chem. B 109, 12935-12945(2005).
50. K. Shinoda, W. Shinoda, C. C. Liew, S. Tsuzuki, Y. Morikawa, M. Mikami. “Two-dimensional self-assembled structures of adenine molecules:mo- deling and simulation”, Surface Science 556, 109-120(2004).
51. M. A. Horsch, Z. Zhang, and C. R. Iacovella. “Hydrodynamics and microphase ordering in block copolymers:Are hy- drodynamics required for ordered phases with periodicity in more than one dimension?”, J. Chem. Phys. 121, 11455-11462(2004).
52. M. J. Ko, S. H. Kim, W. H. Jo. “A Molecular Dynamics Simulation on the Self-Assembly of ABC Triblock Copolymers, 1 Effects of Block Composition in Symmetric Triblock Copolymers”, Macromol. Theory Simul. 10, 381-388(2001).
53. M. Makowska-Janusik, H. Reis, and M. G. Papadopoulos. “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix”, J. Phys. Chem. B 108, 588-596(2004).
54. P. V. Shibaev, M. S. Arzhakov, K. Schaumburg, R. Vinokur, T. Bjornholm, D. Greve, A. Komolov, K. Norgaard. “The Conformation of Poly(3-dodecyl thiophene) Within Methacrylic Polymer Matrix”, Polymer Physics 37, 2909-2917(1999).
55. J. H. Irving, J. G. Kirkwood. “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics”, J. Chem. Phys. 18, 817-829 (1950).
56. A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. “All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins”, J. Phys. Chem. B 102, 3586-3616 (1998).
57. O. Teleman, B. Jonsson, S. Engstrom. “A molecular dynamics simulation of a water model with intramolecular degrees of freedom”, Molecular Physics 60, 193-203 (1987).
58. S. Lifson, A. Warshel. “Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules”, J. Chem. Phys. 49, 5116-5129 (1968).
59. A. Warshel, S. Lifson. “Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes”, J. Chem. Phys. 53, 582-594 (1970).
60. M. Levitt, S. Lifson. “Refinement of Protein conformations using a Macromolecular Energy Minimization Procedure”, J. Mol. Biol. 46, 269-279 (1969).
61. A. T. Hagler, P. S. Stern, R. Sharon, J. M. Becker, F. Naider. “Computer Simulation of the Conformational Properties of Oligopeptides. Comparison of Theoretical Methods and Analysis of Experimental Results”, J. Am. Chem. Soc. 101, 6842-6852 (1979).
62. M. Levitt. “Molecular Dynamics of Native Protein: I. Computer Simulation of Trajectories”, J. Mol. Biol. 168, 595-620 (1983).
63. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus. “CHARMM: A program for macromolecular energy, minimization, and dynamics calculations”, J. Comp. Chem. 4, 187-217 (1983).
64. S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, P. Weiner. “A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins”, J. Am. Chem. Soc. 106, 765-784 (1984).
65. W. F. van Gunsteren, H. J. C. Berendsen, “Groningen Molecular Simulation (GROMOS) Library Manual”, Biomos, University of Groningen, Groningen, 1987.
66. M. Levitt, M. Hirshberg, R. Sharon, V. Daggett. “Potential Energy Functions and Parameters for Simulations of Molecular Dynamics of Proteins and Nucleic Acids in Solution”, Comp. Phys. Comm. 91, 215-231 (1995).
67. M. Levitt, A. Warshel. “Computer Simulation of Protein Folding”, Nature 253, 694-698 (1975).
68. M. Levitt. “Effect of Proline Residues on Protein Folding”, J. Mol. Biol. 145, 251-263 (1981).
69. E. Spohr. “Ion adsorption on metal surfaces. The role of water-metal interactions”, J. Mol. Liq. 64, 91-100 (1995).
70. S. L. Mayo, B. D. Olafson, and W. A. Goddard. “DREIDING: A Generic Force Field for Molecular Simulation”, J. Phys. Chem. 94, 8897-8909 (1990).
71. 楊小震, “分子模擬與高分子材料”, 科學出版社.
72. S. S. Jang, Y. H. Jang, Y. H. Kim, W. A. Goddard, A. H. Flood, B. W. Laursen, H. R. Tseng, J. F. Stoddart, J. O. Jeppesen, J. W. Choi, D. W. Steuerman, E. Delonno, and J. R. Heath. “Structures and Properties of Self-Assembled Monolayers of Bistable [2] Rotaxanes on Au(111) Surfaces from Molecular Dynamics Simulations Validated with Experiment”, J. AM. CHEM. SOC. 127, 1563-1575 (2005).
73. A. R. Leach. “Molecular Modelling:Principles and Applications”, Longman, 1996.
74. M. P. Allen, D. J. Tildesley. “Computer Simulation of Liquids”, Oxford University Press, 1991.
75. D. Frenkel, B. Smit. “Understanding Molecular Simulation”, Academic Press, 1996.
76. D. C. Rapaport. “The Art of Molecular Dynamics Simulation”, Cambridge University Press,1997.
77. J. M. Haile. “Molecular Dynamics Simulation: Elementary Methods”, John Wiley and Sons, New York, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code