Responsive image
博碩士論文 etd-0731108-170212 詳細資訊
Title page for etd-0731108-170212
論文名稱
Title
盲鰻骨骼肌及心肌蛋白代謝體研究
Proteometabolomics of Hagfish Cardiac and Skeletal Muscles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-05-27
繳交日期
Date of Submission
2008-07-31
關鍵字
Keywords
適應、盲鰻、代謝體、蛋白質體
metabolomics, proteomics, hagfish, adaptation
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
盲鰻為脊椎動物最原始的姊妹群,屬於腐食動物,生活圈可達數千公尺水深。盲鰻的代謝速率及心臟效能是脊椎動物中表現最低的,本論文由蛋白體及代謝體層次去探討盲鰻特化的咬肌、低代謝速率的心肌和深海環境對其心肌的影響所展現的生化特徵。第一章及第二章發現creatine kinase在盲鰻體側肌及深海盲鰻心肌有大量表現,推測此酵素在深海動物體側肌及心肌在利用儲存的phosphocreatine扮演重要的角色。而在盲鰻咬肌和深海盲鰻心肌發現glycogen phosphorylase的大量表現,推測此二類的肌肉均進行無氧醣解作用。與海鱺和鮪魚比較,TMAO和尿素在盲鰻心肌含量較高,推測兩者功能在盲鰻心肌扮演維持滲透壓的物質,然而,TMAO而非尿素在深海盲鰻心肌卻含量較高,推測 TMAO不僅為維持滲透壓的功能,應有深度影響的相關生理有其相關性。 此外,nebulin在盲鰻心肌大量表現,而tropomyosin則在海鱺及鮪魚心肌大量表現,顯示他們的收縮特性的差異可能來自於蛋白質間的機制。本論文提供了盲鰻骨骼肌和心肌在生態生理適應上的可能候選蛋白質及代謝物。
Abstract
Hagfish are the plesiomorphic sister group of all vertebrates. They are scavengers and many live at depths reaching thousands of meters. In addition, hagfish show the lowest metabolic rate as well as cardiac performance in vertebrates. This dissertation evaluated the biochemical characterizations of hagfish skeletal muscles related to the feeding apparatus and hagfish cardiac muscle associated with cardiac performance and deep-sea effects at the proteomic and metabolomic levels. In Chapter one and two, I found creatine kinase over-expressed in hagfish somatic muscle and deep-sea hagfish cardiac muscle, I suppose that this enzyme was important for utilization of stored phosphocreatine in deep-sea animals’ somatic muscle and cardiac muscle. Over-expressed glycogen phosphorylase in hagfish dental and deep-sea hagfish cardiac muscle supposes these two types of muscles undergoing the anaerobic glycolysis. Compared to teleosts (cobia and tuna), TMAO and urea were higher in hagfish suggest their functions in hagfish cardiac muscle as osmolytes, however, higher TMAO but not urea in deep-sea hagfish, I suggest TMAO functions not only as an osmolyte but also physiological impacts in hagfish cardiac muscle for depth-related adaptations. I also found higher nebulin express in hagfish cardiac muscle and higher tropomyosin express in cobia and tuna cardiac muscles, thus their contractile differentiations were resulted from the protein-protein mechanism. This dissertation provides candidate proteins and metabolits involved in ecophysiological adaptation of hagfish skeletal and cardiac muscles.
目次 Table of Contents
ABSTRACT........................................................................................................ i
Figure List.......................................................................................................... x
Table List........................................................................................................... xii
INTRODUCTION.............................................................................................. 1
1 Differential proteome and metabolome expression of hagfish dental and somatic skeletal muscles
1.1 Summary.................................................................................................. 6
1.2 Introduction.............................................................................................. 7
1.3 Materials and Methods............................................................................. 10
1.3.1. Histochemistry................................................................................. 10
1.3.2. Extractions of proteins................................................................... 11
1.3.3. 2-DE run conditions....................................................................... 12
1.3.4. Image acquisition and data analysis............................................... 13
1.3.5. In-gel digestion and identification using MS................................... 14
1.3.6. Database search for MS data.......................................................... 15
1.3.7. Extraction of muscle metabolites................................................... 16
1.3.8. NMR spectroscopy........................................................................... 16
1.3.9. NMR data analysis........................................................................... 17
1.4 Results....................................................................................................... 18
1.4.1. Cross-sectional area of hagfish dental and somatic muscle fibers.. 18
1.4.2. 2-DE and reproducibility................................................................. 19
1.4.3. Differentially expressed spots between dental and somatic muscles.............................................................................................. 23
1.4.4. Protein isoforms............................................................................... 24
1.4.5. 1H NMR spectra............................................................................... 29
1.4.6. Pattern recognition........................................................................... 32
1.5 Discussion.................................................................................................. 35
1.5.1. Muscle metabolism.......................................................................... 35
1.5.2. Contractile proteins.......................................................................... 37
1.5.3. Protein isoforms............................................................................... 38
1.5.4. Implication of biochemical regulation in ecophysiology................. 40
1.5.5. Metabolomic differentiation............................................................. 43
1.6 Conclusion.................................................................................................. 46

2 Integration of proteomics and metabolomics for evaluation of depth-related effects on hagfish cardiac muscles
2.1 Summary.................................................................................................. 48
2.2 Introduction.............................................................................................. 49
2.3 Materials and Methods............................................................................. 51
2.3.1. Experimental subjects.................................................................... 51
2.3.2. Extraction of cardiac proteins and metabolite................................ 52
2.3.3. Gel electrophoresis run condition................................................... 52
2.3.4. MALDI-TOF MS(/MS) and database searching............................ 53
2.3.5. NMR spectroscopy......................................................................... 55
2.4 Results...................................................................................................... 55
2.4.1. 1DE and 2DE Protein patterns......................................................... 55
2.4.2. Identified proteins by MALDI TOF/TOF MS................................. 59
2.4.3. Pattern recognitions of 1H NMR spectra.......................................... 59
2.4.4. Assigned Metabolites....................................................................... 60
2.5 Discussion.................................................................................................. 60
2.5.1. Physiological function of creatine kinase in deep-sea organisms… 65

2.5.2. Biological Consequences of TMAO and urea in Hagfish Cardiac Muscles........................................................................................... 66
2.5.3. Phylogenetic effects? .................................................................... 68
2.6 Conclusion............................................................................................... 69
3 Biochemical characterizations of hagfish, cobia and tuna cardiac muscles
3.1 Summary.................................................................................................. 70
3.2 Introduction.............................................................................................. 71
3.3 Materials and Methods............................................................................. 73
3.3.1. Experimental subjects.................................................................... 73
3.3.2. Metabolomics approaches.............................................................. 74
3.3.3. Proteomics approaches................................................................... 74
3.4 Results...................................................................................................... 75
3.4.1. Descriptions of fish cardiac metabolites........................................ 75
3.4.2. Multivariate analyses of 1H NMR spectra..................................... 76
3.4.3. Protein patterns.............................................................................. 81
3.5 Discussion................................................................................................ 85
3.5.1. Osmolytes...................................................................................... 85
3.5.2. Energy metabolism....................................................................... 89
3.5.3. Myofibrilla proteins...................................................................... 92
3.6 Conclusion............................................................................................ 94
CONCLUSION................................................................................................. 95
REFERENCES.................................................................................................. 98
APPENDIX I: TABLES OF ABBREVIATIONS.......................................... 112
CURRICULUM VITAE.................................................................................... 113
REPRINT OF PUBLICATION FROM THE DISSERTATION.................... 114
參考文獻 References
Axelsson, M., Farrell, A. P., & Nilsson, S. (1990). Effects of hypoxia and drugs on the cardiovascular dynamics of the Atlantic hagfish Myxine glutinosa. J Exp Biol, 151, 297-316.
Beamish, F. W. H., Strachan, P. D., & Thomas, E. (1978). Osmotic and ionic performance of the anadromous sea lamprey, Petromyzon marinus. Comp Biochem Physiol A, 60, 435 –443.
Bessman, S. P., & Geiger, P. J. (1981). Transport of energy in muscle - the phosphorylcreatine shuttle. Science, 211, 448-452.
Biron, D. G., Agnew, P., Marche, L., Renault, L., Sidobre, C., & Michalakis, Y. (2005). Proteome of aedes aegypti larvae in response to infection by the intracellular parasite vavraia culicis. Int J Parasitol, 35, 1385-1397.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37, 911-917.
Bloom, G., Őstlund, E. & Fänge, R. (1963). Functional aspects of cyclostome hearts in relation to recent structural findings. In: Brodal, A & Fange, R. (Eds) The Biology of Myxine, Universitetsforlaget, Oslo, pp. 317-339.
Bosworth, C. A. t., Chou, C. W., Cole, R. B., & Rees, B. B. (2005). Protein expression patterns in zebrafish skeletal muscle: Initial characterization and the effects of hypoxic exposure. Proteomics, 5, 1362-1371.
Bouley, J., Chambon, C., & Picard, B. (2004). Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 4, 1811-1824.
Bushnell, P. G., & Brill, R. W. (1992). Oxygen transport and cardiovascular response in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J Com Physiol B, 162, 131-143.
Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., et al. (2004). Blue silver: A very sensitive colloidal coomassie g-250 staining for proteome analysis. Electrophoresis, 25, 1327-1333.
Capitanio, D., Vigano, A., Ricci, E., Cerretelli, P., Wait, R., & Gelfi, C. (2005). Comparison of protein expression in human deltoideus and vastus lateralis muscles using two-dimensional gel electrophoresis. Proteomics, 5, 2577-2586.
Chen, Y. W., Taxonomy and Reproduction Biology of Eptatretus chinensis (Myxinidae, Myxiniformes), Master’s thesis, National Sun Yat-sen University, Kaohsiung, Taiwan 2004.
Childress, J. J. (1971). Respiratory rate and depth of occurrence of midwater animals. Limnol Oceanogr, 16, 104-106.
Childress, J. J. (1995). Are there physiological and biochemical adaptations of metabolism in deep-sea animals. Trends in Ecology & Evolution, 10, 30-36.
Childress, J. J., & Somero, G. N. (1979). Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Marine Biology, 52, 273-283.
Dickson, K. A. (1995). Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Environ Biol Fish, 42, 65-97.
Driedzic, W. R. (1992). Cardiac energy metabolism. In: Hoar, W. S., Randall, D. J., & Farrell, A. P. (Eds.) Fish Physiology, Vol. XIIA, Academic Press, San Diego, pp. 219-266.
Driedzic, W. R., & Gesser, H. (1994). Energy metabolism and contractility in ectothermic vertebrate hearts: Hypoxia, acidosis, and low temperature. Physiol Rev, 74, 221-258.
Driedzic, W. R., Sidell, B. D., Stowe, D., & Branscombe, R. (1987). Matching of vertebrate cardiac energy demand to energy metabolism. Am J Physiol, 252, R930-937.Deming, J. W. (1998). Deep ocean environmental biotechnology. Curr Opin Biotechnol, 9, 283–287.
Dunnett, M., Harris, R. C., Soliman, M. Z., & Suwar, A. A. (1997). Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Res Vet Sci, 62, 213-216.
Dupont, A., Corseaux, D., Dekeyzer, O., Drobecq, H., Guihot, A. L., Susen, S., et al. (2005). The proteome and secretome of human arterial smooth muscle cells. Proteomics, 5, 585-596.
Farrell, A. P. (1991). From hagfish to tuna: a perspective on cardiac function in fish. Physiol. Zool, 64, 1137-1164.
Farrell, A. P., & Jones, D. R. (1992). The heart. In: Hoar, W. S., Randall, D. J., & Farrell, A. P. (Eds.) Fish Physiology, Vol. XIIA, Academic Press, San Diego, pp. 1-88.
Farrell, A. P., & Stecyk, J. A. W., (2007). The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates, Comp Biochem Physio. A, 147, 300–312 .
Feher, J. J., Waybright, T. D., & Fine, M. L. (1998). Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. J Muscle Res Cell Motil, 19, 661-674.
Flood, P. R. (1979). The vascular supply of three fibre types in the parietal trunk muscle of the atlantic hagfish (Myxine glutinosa, L). A light microscopic quantitative analysis and an evaluation of various methods to express capillary density relative to fibre types. Microvasc Res, 17, 55-70.
Fock, U., & Hinssen, H. (2002). Nebulin is a thin filament protein of the cardiac muscle of the agnathans. J Muscle Res Cell Motil, 23, 205-213.
Forster, M. E., Davison, W., Axelsson, M., & Farrell, A. P. (1992). Cardiovascular responses to hypoxia in the hagfish, Eptatretus cirrhatus. Respir Physiol, 88, 373-386.
Forster, M. E. (1998). Cadiovascular function in hagfishes. In: Jørgensen, J. M., Lomholt, J., Weber, R., & Malte H. (Eds.) The Biology of Hagfishes, Chapman & Hall, NY, pp. 237-259.
Gage, J. D., & Tyler, P. A. (1991). Deep-sea biology: A natural history of organisms at the deep-sea floor. Cambridge, NY: Cambridge University Press.
Gelfi, C., De Palma, S., Cerretelli, P., Begum, S., & Wait, R. (2003). Two-dimensional protein map of human vastus lateralis muscle. Electrophoresis, 24, 286-295.
Gelfi, C., Vigano, A., De Palma, S., Ripamonti, M., Begum, S., Cerretelli, P., et al. (2006). 2-d protein maps of rat gastrocnemius and soleus muscles: A tool for muscle plasticity assessment. Proteomics, 6, 321-340.
Gillett, M. B., Suko, J. R., Santoso, F. O. & Yancey, P. H. (1997). Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J Exp Zool, 279, 386-391.
Goh, Y., & Tamura, T. (1980). Olfactory and gustatory responses to amino acids in two marine teleosts-red sea bream and mullet. Comp Biochem Physiol, 66C, 217-224.
Gorbman, A. (1990). Sex differentiation in the hagfish eptatretus stouti. Gen Comp Endocrinol, 77, 309-323.
Hansen, C. A., & Sidell, B. D. (1983). Atlantic hagfish cardiac muscle: Metabolic basis of tolerance to anoxia. Am J Physiol, 244, R356-362.
Hebard, C. E., Flick, G. J., & Martin, R. E. (1982). Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish. In: Martin, R.E. (Ed.), Chemistry and Biochemistry of Marine Food Products. AVI Publishing, Westport, CT, pp 149-175.
Hemmer, W., Skarli, M., Perriard, J. C., & Wallimann, T. (1993). Effect of okadaic acid on protein-phosphorylation patterns of chicken myogenic cells with special reference to creatine-kinase. FEBS Lett, 327, 35-40.
Heizmann, C. W., Berchtold, M.W., & Rowlerson, A.M. (1982). Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci USA, 79, 7243–7247.
Herbert, B. R., Molloy, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G., & Williams, K. L. (1998). Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis, 19, 845-851.
Hochachka, P. W., & Somero, G. N. (2002). Biochemical adaptation: Mechanism and process in physiological evolution, Oxford Univ. Press.
Hodge, T., & Cope, M. J. (2000). A myosin family tree. J Cell Sci, 113 Pt 19, 3353-3354.
Hoh, J. F. Y. (2002) “Superfast” or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J Exp Biol, 205, 2203-2210
Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6, 4716-4723.
Horikoshi, K. (1998). Barophiles: Deep-sea microorganisms adapted to an extreme environment. Curr Opin Microbiol, 1, 291-295.
Hou, T. T., Johnson, J. D., & Rall, J. A. (1992). Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol, 449, 399–410.
Hou, T. T., Johnson, J. D., & Rall, J. A. (1991). Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J Physiol, 441, 285–304.
Ishimatsu, A., Maruta, H., Oda, T., & Ozaki, M. (1997). A comparison of physiological response in yellowtail to fatal environmental hypoxia and expose to Chattonella marina. q, 64, 557-562.
Johansen, K. (1963). The cardiovascular system of Myxine glutinosa. In: Brodal, A & Fange, R. (Eds) The Biology of Myxine, Universitetsforlaget, Oslo, pp. 289-316.
Johansen, K., & Strahan, R. (1963). The respiratiory system of Myxine glutinosa. In Brodal, A & Fange, R. (Eds) The Biology of Myxine, Universitetsforlaget, Oslo, pp. 353-371.
Johnson, P., Fedyna, J. S., Schindzielorz, A., Smith, C. M., & Kasvinsky, P. J. (1982). Regulation of muscle phosphorylase activity by carnosine and anserine. Biochem Biophys Res Commun, 109, 769-775.
Kashiwaya, Y., Sato, K., Tsuchiya, N., Thomas, S., Fell, D. A., Veech, R. L., Passonneau, J. V. (1994). Control of glucose utilization in working perfused rat heart. J Biol Chem, 269, 25502-255.
Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nat Rev Microbiol, 3, 557-565.
Kelly, R. H. & Yancey, P. H. (1999). High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol Bull, 196, 18-25.
Korneliussen, H., & Nicolaysen, K. (1973). Ultrastructure of four types of striated muscle fibers in the atlantic hagfish (Myxine glutinosa, L.). Z Zellforsch Mikrosk Anat, 143, 273-290.
Kruckeberg, A. L., Neuhaus, H. E., Feil, R., Gottlieb, L. D., Stitt, M. (1989). Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of flux control coefficients and elasticity coefficients. Biochem J, 261, 457.
Kruger, M., Wright, J., & Wang, K. (1991). Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol, 115, 97-107
Labeit, S., & Kolmerer, B. (1995). The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol, 248, 308-315.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature, 227, 680-685.
Li, Z. B., Lehar, M., Samlan, R., & Flint, P. W. (2005). Proteomic analysis of rat laryngeal muscle following denervation. Proteomics, 5, 4764-4776.
Liem, K. F., Bemis, W. E., Jr. Walker, W. F., & Grande, L. (2001). Functional anatomy of the vertebrates.An evolutionary perspective: Harcourt College.
Lin, C. Y., Wu, H., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3, 55-67.
Lopez, J. L., Marina, A., Alvarez, G., & Vazquez, J. (2002). Application of proteomics for fast identification of species-specific peptides from marine species. Proteomics, 2, 1658-1665.
Mackie, A. M., & Mitchell, A. I. (1982). Further studies on the chemical control of the feeding behaviour in the Dover sole, Solea solea. Comp Biochem Physiol, 73, 89-93.
Mackie, A. M., & Mitchell, A. I. (1983). Studies on the chemical nature of feeding stimulants for the juvenile European eel, Anguilla anguilla (L.). J Fisi Biol, 22: 425-430.
Mathews, C. K., & van Holde, K. E. (1996). Biochemistry. Menlo Park, CA: Benjamin/Cummings.
Mayr, M., Mayr, U., Chung, Y. L., Yin, X., Griffiths, J. R., & Xu, Q. (2004). Vascular proteomics: Linking proteomic and metabolomic changes. Proteomics, 4, 3751-3761.
McElhinny, A. S., Kolmerer, B., Fowler, V. M., Labeit, S., & Gregorio, C. C. (2001). The n-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem, 276, 583-592.
McMillan, C. B., & Wisner, R. L. (2004). Review of the hagfishes (myxinidae, myxiniformes) of the northwestern pacific ocean, with descriptions of three new species, eptatretus fernholmi, paramyxine moki, and p-walkeri. Zoological Studies, 43, 51-73.
Mellgren, S. I., & Mathisen, J. S. (1966). Oxidative enzymes, glycogen and lipid in striated muscle. A histochemical study in the atlantic hagfish (myxine glutinosa l.). Z Zellforsch Mikrosk Anat, 71, 169-188.
Merkulova, T., Lucas, M., Jabet, C., Lamande, N., Rouzeau, J. D., Gros, F., et al. (1997). Biochemical characterization of the mouse muscle-specific enolase: Developmental changes in electrophoretic variants and selective binding to other proteins. Biochemical Journal, 323, 791-800.
Mok, H. K., & Chen, Y. W. (2001). Distribution of hagfish (Myxinidae : Myxiniformes) in Taiwan. Zool Stud, 40, 233-239.
Moyes, C. D. (1996). Cardiac metabolism in high performance fish. Comp Biochem Physiol A, 113, 69-75.
Moyes, C. D., Mathieu-Costello, O. A., Brill, R. W., & Hochachka, P. W. (1992). Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can J Zool, 70, 1246-1253.
Nelson, D. L., & Cox, M. M. (2004). Lehninger principles of biochemistry. NY: W. H. Freeman and Company.
Nicholson, J. K., Foxall, P. J., Spraul, M., Farrant, R. D., & Lindon, J. C. (1995). 750 mhz 1h and 1h-13c nmr spectroscopy of human blood plasma. Anal Chem, 67, 793-811.
Okumura, N., Hashida-Okumura, A., Kita, K., Matsubae, M., Matsubara, T., Takao, T., et al. (2005). Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics, 5, 2896-2906.
Olsson, I., Larsson, K, Palmgren, R. & Bjellqvist, B. (2002). Organic disulfides as a means to generate streak-free two-dimensional maps with narrow range basic immobilized pH gradient strips as first dimension. Proteomics, 2, 1630-1632.
Pauls, T. L., Cox, J. A., & Berchtold, M. W. (1996). The ca2+(-)binding proteins parvalbumin and oncomodulin and their genes: New structural and functional findings. Biochim Biophys Acta, 1306, 39-54.
Perlman, D. F. & Goldstein, L. (1988). Nitrogen metabolism. In Shuttleworth, T. J. (Ed.) Physiology of Elasmobranch Fishes, Berlin: Springer-Verlag, pp. 253-275.
Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A., & Stempel, K. E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, 11, 2627-2633.
Pierce, V. A., & Crawford, D. L. (1997). Phylogenetic analysis of glycolytic enzyme expression. Science, 276, 256-259.
Pineiro, C., Barros-Velazquez, J., Vazquez, J., Figueras, A., & Gallardo, J. M. (2003). Proteomics as a tool for the investigation of seafood and other marine products. J Proteome Res, 2, 127-135.
Price, T. B., Rothman, D. L., & Shulman, R. G. (1999). NMR of glycogen in exercise. Proc Nutr Soc, 58, 851-859.
Rall, J. A. (1996). Role of parvalbumin in skeletal muscle relaxation. News Physiol Sci, 11, 249–255.
Robertson, J. D. (1976). Chemical composition of the body fluids and the muscle of the hagfish Myxine glutinosa and the rabbit-fish Chimaera monstrosa. J Zool, 178, 261-277.
Rome, L. C., & Klimov, A. A. (2000). Superfast contractions without superfast energetics: Atp usage by sr-ca2+ pumps and crossbridges in toadfish swimbladder muscle. J Physiol, 526 Pt 2, 279-286.
Rosenblum, E. S., Tjeerdema, R. S., & Viant, M. R. (2006). Effects of temperature on host-pathogen-drug interactions in red abalone, haliotis rufescens, determined by 1h nmr metabolomics. Environ Sci Technol, 40, 7077-7084.
Rowlerson A, Mascarello F, Veggetti A, Carpene E (1983) The fiber-type composition of the first branchial arch muscles in Carnivora and Primates. J Muscle Res Cell Motil, 4, 443-472
Ross, M. H., Romrell, L. J., & Kaye, G. I. (1995). Histology: A text and atlas. Baltimore, Maryland: Williams & Wilkins.
Sanchez, J. C., Chiappe, D., Converset, V., Hoogland, C., Binz, P. A., Paesano, S., et al. (2001). The mouse swiss-2d page database: A tool for proteomics study of diabetes and obesity. Proteomics, 1, 136-163.
Satchell, G. H. (1984). On the caudal heart of Myxine (Myxinoidea: Cylostomata). Acta Zool (Stockholm), 65, 125-133.
Satchell, G. H. (1986). Cardiac function in the hagfish, Myxine (Myxinoidea: Cylostomata). Acta Zool (Stockholm), 67, 115-122.
Siebenaller, J. F., Somero, G. N. (1979). Pressure-adaptive differences in the binding and catalytic properties of muscle-type (M4) lactate dehydrogenases of shallow- and deep-living marine fishes. J Comp Physiol, 129, 295–300.
Sebert, P. (2002). Fish at high pressure: A hundred year history. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology, 131, 575-585.
Sebert, P., Peragon, J., Barroso, J. B., Simon, B., & Melendez-Hevia, E. (1998). High hydrostatic pressure (101 ata) changes the metabolic design of yellow freshwater eel muscle. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 121, 195-200.
Serkova, N. J., Jackman, M., Brown, J. L., Liu, T., Hirose, R., Roberts, J. P., et al. (2006). Metabolic profiling of livers and blood from obese zucker rats. J Hepatol, 44, 956-962.
Shuttleworth, T. J. (1988). Salt and water balance—extrarenal mechanisms. In Shuttleworth, T. J. (Ed.) Physiology of Elasmobranch Fishes, Berlin: Springer-Verlag, pp. 171-200.
Smith, K. L., & Hessler, R. R. (1974). Respiration of benthopelagic fishes: in situ measurements at 1230m. Science, 184, 72–73.
Simon, B., Sebert, P., Cannmoisan, C., & Barthelemy, L. (1992). Muscle energetics in yellow fresh-water eels (Anguilla anguilla L) exposed to high hydrostatic-pressure (101-ata) for 30 days. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 102, 205-208.
Somero, G. N. (1992). Adaptations to high hydrostatic pressure. Annu Rev Physiol, 54, 557-577.
Somero, G. N. (2003). Protein adaptations to temperature and pressure: Complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp Biochem Physiol B Biochem Mol Biol, 136, 577-591.
Staron, R. S., & Pette, D. (1986). Correlation between myofibrillar atpase activity and myosin heavy-chain composition in rabbit muscle-fibers. Histochemistry, 86, 19-23.
Stevens, L., Bastide, B., Bozzo, C., & Mounier, Y. (2004). Hybrid fibres under slow-to-fast transformations: Expression is of myosin heavy and light chains in rat soleus muscle. Pflugers Archiv-European Journal of Physiology, 448, 507-514.
Sullivan, K. M., & Somero, G. N. (1980). Enzyme-activities of fish skeletal-muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion. Marine Biology, 60, 91-99.
Sun, H. W., Hui, C. F., & Wu, J. L. (1998). Cloning, characterization, and expression in escherichia coli of three creatine kinase muscle isoenzyme cdnas from carp (cyprinus carpio) striated muscle. J Biol Chem, 273, 33774-33780.
Szatkowski, M. L., Westfall, M. V., Gomez, C. A., Wahr, P. A., Michele, D. E., DelloRusso, C., et al. (2001). In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. J Clin Invest, 107, 191-198.
Theron, M., & Sebert, P. (2003). Hydrostatic pressure and cellular respiration: Are the values observed post-decompression representitive of the reality under pressure. Mitochondrion, 3, 75-81.
Tibbits, G. F. (1996). Towards a molecular explanation of the high performance of the tuna heart. Comp Biochem Physiol A, 113, 77-82.
Treberg, J. R., & Driedzic, W. R. (2002). Elevated levels of trimethylamine oxide in deep-sea fish: Evidence for synthesis and intertissue physiological importance. J Exp Zool, 293, 39-45.
Treberg, J. R., Martin, R. A., & Driedzic, W. R. (2003). Muscle enzyme activities in a deep-sea squaloid shark, centroscyllium fabricii, compared with its shallow-living relative, squalus acanthias. Journal of Experimental Zoology Part a-Comparative Experimental Biology, 300A, 133-139.
Turinsky, J., & Long, C. L. (1990). Free amino acids in muscle: Effect of muscle fiber population and denervation. Am J Physiol, 258, E485-491.
Viant, M. R. (2007). Revealing the metabolome of animal tissues using 1h nuclear magnetic resonance spectroscopy. Methods Mol Biol, 358, 229-246.
Viant, M. R., Rosenblum, E. S., & Tieerdema, R. S. (2003). Nmr-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol, 37, 4982-4989.
Virtanen, E. and Soivio, A. (1985). The patterns of T3, T4 cortisol and Na-K-ATP base during smoltification of hatchery-reared Salmo salar and comparison with wild smolts. Aquaculture, 45, 97-109.
Wang, K., & Wright, J. (1988). Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol, 107, 2199-2212.
Weber, J-M., & Haman, F. (1996). Pathways for metabolic fuels and oxygen in high performance fish. Com Biochem Physiol A, 113, 33-38.
Westermeier, R., & Naven, T. (2002). Proteomics in practice: A laboratory mannual of proteome analysis Weinheim: Wiley-VCH Verlag-GmbH.
Westerblad, H., & Allen, D. G. (1994). Relaxation, [Ca2+] and [Mg2+] during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. J Physiol, 480, 31–43.
Wilkins, M. R., & Williams, K. L. (1997). Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: A theoretical evaluation. J Theor Biol, 186, 7-15.
Wilkins, M. R., Appel, R. D., Van Eyk, J. E., Chung, M. C., Gorg, A., Hecker, M., Huber, L. A., Langen, H., Link, A. J., Paik, Y. K., Patterson, S. D., Pennington, S. R., Rabilloud, T., Simpson, R. J., Weiss, W., & Dunn, M. J. (2006). Guidelines for the next 10 years of proteomics. Proteomics, 6, 4-8.
Winnard, P., Cashon, R. E., Sidell, B. D., & Vayda, M. E. (2003). Isolation, characterization and nucleotide sequence of the muscle isoforms of creatine kinase from the antarctic teleost chaenocephalus aceratus. Comp Biochem Physiol B, 134, 651-667.
Withers, P. C., Morrison,G., Hefter, G. T., & Pang, T. S. (1994). Role of urea and methylamines in buoyancy of elasmobranchs. J Exp Biol, 188, 175-189.
Wright, J., Q. Q. Huang, & Wang, K. (1993). Nebulin is a full-length template of actin filaments in the skeletal muscle sarcomere: an immunoelectron microscopic study of its orientation and span with site-specific monoclonal antibodies. J Muscle Res Cell Motil,14, 476-483.
Yancey, P. H. (1994) Compatible and counteracting solutes. In: Strange, K. (Ed.), Cellular and Molecular Physiology of Cell Volume Regulation. CRC Press, London, pp. 81-109.
Yancey, P. H. & Siebenaller, J. F. (1999). Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J Exp Biol, 202, 3597-3603.
Yancey, P. H., Fyfe-Johnson, A. L., Kelly, R.H., Walker, V.P., & Auñón, M. T. (2001). Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts. J Exp Zool, 289, 172-176.

Yoshioka, Y., Masuda, T., Nakano, H., Miura, H., Nakaya, S., Itazawa, S., et al. (2002). In vitro 1h-nmr spectroscopic analysis of metabolites in fast- and slow-twitch muscles of young rats. Magn Reson Med Sci, 1, 7-13.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.253.170
論文開放下載的時間是 校外不公開

Your IP address is 52.14.253.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code