Responsive image
博碩士論文 etd-0731112-122123 詳細資訊
Title page for etd-0731112-122123
論文名稱
Title
垂直耦合砷化銦鎵量子點
Vertically Coupled InGaAs Quantum Dots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-04
繳交日期
Date of Submission
2012-07-31
關鍵字
Keywords
砷化銦鎵、太陽能電池、耦合、量子點、調變掺雜
Modulation doping, Coupling, Quantum dot, InGaAs, Solar cell
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
本論文先討論三層垂直耦合砷化銦鎵量子點結構的光學極化特性。改變三層量子點結構的砷化鎵間隔層厚度,經由實驗結果得到其量子點基態之TE/TM比值,隨著間隔層厚度從40奈米減少至5奈米的改變,比值從4降到1.5。並且,觀察到TE極化(平行磊晶面)在[01-1]方向有強的異方向性。當加入P型調變摻雜於5奈米間隔層的強耦合樣品中,更能減少TE/TM比值到1.2。同時,使用橫斷面穿透式電子顯微鏡直接揭示了5奈米間隔層的砷化銦鎵量子點結構沿生長方向整齊排列。
從電致螢光(EL)和差分吸收(Δα)實驗上,結果顯示垂直耦合的量子點的激發態有較高的光學增益和吸收,推論由於e2-hh躍遷有較高的振盪子強度所造成。我們也討論加入調變摻雜在垂直耦合結構中的影響。在垂直耦合量子點結構中,除了量子點的基態和激發態之外,還有產生一個耦合能階。對於p型調變摻雜的垂直耦合量子點樣品,由於電洞被捕獲的機率變大,使得載子躍遷也增加。而對於n型調變摻雜的樣品,從電致螢光實驗中顯示,其樣品主要的吸收變化座落在耦合能階上。
最後,探討砷化鎵基板的太陽能電池。為了增加遠紅外線範圍的吸收,以堆疊多層的垂直耦合砷化銦鎵量子點於主動層中。由於,有強的垂直耦合在每層量子點之間以提升整體的量子效率。因此,在太陽能電池的應用上,以堆疊多層的垂直耦合量子點方式來實現。對於九層砷化銦鎵垂直耦合量子點元件顯示其短路電流為10.5 mA/cm2。比較參考樣品來說,短路電流增加了42%。然而,比較兩者的開路電壓從0.88 V減少到0.54V。更進一步,仔細討論耦合結構之間隔層厚度對光伏特的響應。其中,當間隔層厚度為10奈米的樣品,有較好的電流密度表現(~24 mA/cm2)以及效率可達(~10.6%)。因此,比較參考樣品而言,其電流密度增加了55%,而效率增大了112%。
Abstract
We have investigated the polarization effect of optical process in the vertically coupled InGaAs quantum dots (QDs) triple layers by varying the thickness of GaAs spacer layer. The TE/TM ratio for the ground state emission decreases from near 4 to 1.5 as the spacer thickness (d) decreases from 40 nm to 5 nm. And, the TE polarization (in-plane polarization) is anisotropic with a stronger component along [01-1] direction. P-type modulation doping further decreases the TE/TM ratio to r = 1.2 for the strong vertical coupling QDs structure of 5-nm spacer. Then, using a cross-sectional transmission electron microscopy directly reveals the InGaAs QDs of 5-nm spacer well aligned along the growth direction.
From the electroluminescence (EL) and differential absorption (Δα) experiments, the higher optical gain and absorption change for the excited state suggest that the e2-hh transition has higher oscillator strength for the vertically coupled QDs. We also investigate for the triple-layer InGaAs vertically coupled quantum dots (VCQDs) by adding modulation doping (MD) in the 5-nm GaAs spacer layers. In addition to the QDs fundamental and excited transitions, a coupled-state transition is observed for the VCQDs. For the VCQDs of p-type MD, the optical transitions at ground state and coupled state are enhanced by the improvement of hole capture for the valence subbands. For the VCQDs of n-type MD, the main absorption change occurs at the coupled state, consistent with the dominant emission peak observed in EL spectra.
For GaAs-based solar cells application, in order to enhance absorption at infrared range for GaAs-based solar cells, multi-stack InGaAs VCQDs of 5-nm GaAs spacers are grown in the active region. Due to the strong vertical coupling between QDs would promote quantum efficiency. We have investigated the photovoltaic response for the solar cells by increasing the layer numbers of VCQDs. The device of nine-layer InGaAs VCQDs shows an enhanced short-circuit current density (Jsc) of 10.5 mA/cm2. The value is increased by 42% compared to GaAs reference device. However, the open-circuit voltage (Voc) is reduced from 0.88 V to 0.54 V. Then, we change the GaAs spacer thickness of coupled In0.75Ga0.25As QDs, and investigated the effects on photovoltaic response. For the sample of d =10 nm shows the best performance of current density (Jsc~24 mA/cm2) and efficiency (h~10.6%). The Jsc and h are increases by 55% and 112% more than the device without QDs, respectively.
目次 Table of Contents
Chapter 1. Introduction………………………….……………..……….....1
1.1 Motivation………………………………………………………..………....2
1.2 Progress of InGaAs vertically aligned quantum dots………………….…....3
1.3 This Thesis……………………………………………………………..........4
Reference……………………………………………………………………5

Chapter 2. Growth and structural characterization of the vertically coupled InGaAs quantum dots………………………………..7
2.1 MBE growth of the vertically coupled InGaAs quantum dots……………...7
2.2 Luminescence measurements for triple-layer quantum dots……………....12
2.3 Absorption measurements……………………………………………….....21
2.4 Annealing process for quantum dots………………………………………30
2.5 Electro-reflectance measurements……………………………....................34
2.6 Optical characterization of six-stack vertically coupled
quantum dots laser........................................................................................36
2.7 Summary…………………………………………………………………..48
Reference………………………………………………………………….49

Chapter 3. Electro-optic effect in vertically coupled InGaAs
quantum dots…………………………………………...….....50
3.1 Introduction…………………………………………………….................50
3.2 Fabary-Perot measurements……………………………………………….51
3.3 Summary…………………………………………………………………..58
Reference………………………………………………………………….59

Chapter 4. Modulation-doping effect on the optical characteristics of vertically coupled quantum dots…………………………….60
4.1 Introduction……………………………………………………………….60
4.2 Photoluminescence………………………………………………………...63
4.3 Polarization-dependent photoluminescence……………………………….70
4.4 Absorption……………………………………………………...................75
4.5 Summary…………………………………………………………………..81
Reference………………………………………………………………….82


Chapter 5. Characteristics of vertically coupled quantum dot
solar cells………………………………………...………........84
5.1 Introduction of intermediated band solar cells…………………………….85
5.2 Modulation doping effect on coupled quantum dot solar cells…………....86
5.3 Buffer layer effect on coupled quantum dot solar cells……………………90
5.4 9-layer coupled quantum dot solar cells…………………………………...92
5.5 Summary………………………………………………………………….104
Reference…………………………………………………………………105

Chapter 6. Conclusions…………………………………………………..106

Publication list……………………………………………………………..107
參考文獻 References
[1.1]H. Saito, K. Nishi, S. Sugou, Y. Sugimoto, Appl. Phys. Lett. 71, 590 (1997).
[1.2]T. Saito, T. Nakaoka, T. Kakitsuka, Y. Yoshikuni, Y. Arakawa, Physica E 26, 217 (2005).
[1.3]T. Kita, O. Wada, H. Ebe, Y. Nakata, M. Sugawara, Jpn. J. Appl. Phys. 41, 1143 (2002).
[1.4] M.A. Cusack, P.R. Briddon, M. Jaros, Phys. Rev. B 54, R2300 (1996).
[1.5] S.S. Li, et al., Phys. Rev. B 54, 11575 (1996).
[1.6] S. Cortez, O. Krebs, P. Voisin, J.M. Gerard, Phys. Rev. B 63, 233306 (2001).
[1.7]K. Shum, J. Appl. Phys. 69, 6484 (1991).
[1.8]D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
[1.9]V. Turck, F. Heinrichsdorff, M. Veit, R. Heitz, M. Grundmann, A. Krost, and D. Bimberg, Applied Surface Science 123-124, 352 (1998).
[1.10]D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett.73, 2564 (1998).
[1.11]D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Physical Review B 32, 1043 (1985).
[1.12]A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).
[1.13]V. Aroutiounian, S. Petrosyan, A. Khachatryan and K. Touryan, J. Appl. Phys. 89, 2268 (2001).
[1.14]R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 91, 243115 (2007).
[1.15]A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005).
[1.16]R. Oshima, A. Takata, and Y. Okada, Appl. Phys. Lett. 93, 083111 (2008).
[1.17]P. Yu, W. Langbein, K. Leosson, J. M. Hvam, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. F. Tsatsul’nikov, and Yu. G. Musikhin, Phys. Rev. B 60, 16 680 (1999).
[1.18]J. Martinez-Pastor, B. Alen, C. Rudamas, Ph. Roussignal, J. M. Garcia, and L. Gonzalaz, Physica E 17, 46 (2003).
[1.19]G. S. Solomon, J. A. Trezza, A. F. Marsall, and J. S. Harris, Phys. Rev. Lett. 76, 952 (1996).
[1.20]M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul’nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogovand P. Werner, J. Appl. Phys. 83, 5561 (1998).
[1.21]D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, IEEE Photonics Technol. Lett. 19, 1118 (2007).
[1.22]K. C. Hall, T. F. Boggess, D. G. Deppe and O. B. Shchekin, Appl. Phy. Lett. 85, 4570 (2004).
[1.23]S. Marcinkevicius, J. Siegert and Q. X. Zhao, J. Appl. Phys. 100, 054310-1 (2006).
[1.24] K. Gundogdu, K. C. Hall, Thomas F. Boggess, D. G. Deppe, and O. B. Shchekin, Appl. Phy. Lett. 85, 4570 (2004).
[1.25] K. W. Sun, A. Kechiantz, B. C. Lee and C. P. Lee, Appl. Phy. Lett. 88, 163117-1 (2006).
[1.26]Dennis G. Deppe, H. Huang, and Oleg B. Shchekin, IEEE Journal of Quantum Electronics. 38, 1587 (2002).
[2.1]N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Su, and D. L. Huffaker, Appl. Phys. Lett. 85, 3050 (2004).
[2.2]M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul'nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop'ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov, and P. Werneret, J. Appl. Phys. 83, 5561 (1998).
[2.3] M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul'nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop'ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov, and P. Werneret, J. Appl. Phys.83 (1998) 5561.
[2.4] G. Park, O. B. Shchekin, and D. G. Deppe, IEEE J. Quantum Electronics 36, 1065 (2000).
[2.5] L. Chu, M. Arzberger, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 2247 (1999)
[2.6] David J. Feng, C. L. Chiu, E. Y. Lin, T. S. Lay and T. Y. Chang, Jpn. J. Appl. Phys. 45 (2006) 2426.
[2.7]A. Babinski, J. Jasinski, and R, Bozek, Appl. Phys. Lett.79,16 (2001)
[2.8]D. E. Aspenes, Phys. Rev. 166, 921 (1968).
[2.9] D. Bimberg, et. al., Thin Solid Films 367, 235 (2000).
[2.10] S. V. Zaitsev, et. al., Jpn. J. Appl. Phys. 36, 4219 (1997).
[3.1] H. Saito, K. Nishi, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett. 71 (1997) 590.
[3.2] T. Saito, T. Nakaoka, T. kakitsuka, Y. Yoshikuni, and Y. Arakawa, Physica E 26 (2005) 217.
[3.3]T. Kita, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, Jpn. J. Appl. Phys. 41 (2002) 1143.
[3.4]M.A. Cusack, P.R. Briddon, and M. Jaros, Phys. Rev. B 54 (1996) R2300.
[3.5]S.S. Li et al., Phys. Rev. B 54 (1996) 11575.
[3.6]S. Cortez, O. Krebs, P. Voisin, J.M. Gerard, Phys. Rev. B 63 (2001) 233306.
[3.7]Mark J. Bloemer and Krishna Myneni, J. Appl. Phys. 74, 4849 (1993).
[3.8] K.Y. Chuang, C.Y. Chen, T.E. Tzeng, J.Y. Feng, and T.S. Lay, Physica E 40, 1882 (2008).[3.9] Imran B. Akca, Aykutlu Dana, Atilla Aydinli, Marco Rossetti, Lianhe Li, Andrea Fiore, and Nadir Dagli, Optics Express 16, 3439 (2008).
[3.10] O. Qasaimeh, K. Kamath, P. Bhattacharya, and J. Phillips, Appl. Phys. Lett. 72, 1275 (1998).
[3.11] Shinji Nishimura, Hiroaki Inoue, Hirohisa Sano, and Koji Ishida, IEEE Photon. Technol. Lett. 4, 1124 (1992).
[3.12]C. A. Berseth, C. Wuethrich, and F. K. Reinhart, J. Appl. Phys. 71, 2821 (1992).
[3.13] L. Davis, K. K. Ko, W. Q. Li, H. C. Sun, Y. Lam, T. Brock, S. W. Pang, P. K. Bhattacharya ,and M. J. Rools, Appl. Phys. Lett. 62, 2766 (1993).
[3.14] S.S. Lee, R.V. Ramaswamy, and V.S. Sundaram, IEEE J. Quantum Electron 27, 726 (1991).
[4.1] P. Yu, W. Langbein, K. Leosson, J. M. Hvam, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. F. Tsatsul’nikov, and Yu. G. Musikhin, Phys. Rev. B 60 (1999) 16680.
[4.2]J. Martinez-Pastor, B. Alen, C. Rudamas, Ph. Roussignal, J. M. Garcia, and L. Gonzalaz, Physica E 17 (2003) 46.
[4.3] G. S. Solomon, J. A. Trezza, A. F. Marsall, and J. S. Harris, Phys. Rev. Lett. 76 (1996) 952.
[4.4]M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul’nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov and P. Werner, J. Appl. Phys. 83 (1998) 5561.
[4.5]D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, IEEE Photonics Technol. Lett. 19 (2007) 1118.
[4.6] K. C. Hall, T. F. Boggess, D. G. Deppe and O. B. Shchekin, Appl. Phy. Lett. 85 (2004) 4570.
[4.7]S. Marcinkevicius, J. Siegert and Q. X. Zhao, J. Appl. Phys. 100 (2006) 054310-1.
[4.8] K. W. Sun, A. Kechiantz, B. C. Lee and C. P. Lee, Appl. Phy. Lett. 88 (2006) 163117-1.
[4.9] K. Gundogdu, K. C. Hall, Thomas F. Boggess, D. G. Deppe, and O. B. Shchekin, Appl. Phy. Lett. 85 (2004) 4570.
[4.10] D.G. Deppe, H. Huang, and O.B. Shchekin, IEEE Journal of Quantum Electronics. 38 (2002) 1587.
[4.11] Y.M. Park, Y.J. Park, K.M. Kim, J.C. Shin, J.D. Song, J.I. Lee, K.H. Yoob, Journal of Crystal Growth. 271 (2004) 385.
[4.12] M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul’nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov and P. Werner, J. Appl. Phys. 83 (1998) 5561.
[4.13] K. Y. Chuang, C. Y. Chen, T. E. Tzeng, David J. Y. Feng and T. S. Lay, Journal of Crystal Growth. 311 (2009) 1767.
[4.14] V.V. Nikolaev, N.S. Averkiev, M.M. Sobolev, I.M. Gadzhiyev, I.O. Bakshaev, M.S. Buyalo, and E.L. Portnoi, Phys. Rev. B. 80 (2009) 205304.
[4.15] M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, Appl. Phys. Lett. 85 (2004) 4145.
[4.16] Y. P. Varshni, Physica 34, 149 (1967).
[4.17] N. Kumagai, K. Watanabe, Y. Nakata and Y. Arakawa, Journal of Crystal Growth. 301-302 (2007) 805.
[4.18] T. Saito, T. Nakaoka, T. kakitsuka, Y. Yoshikuni, and Y. Arakawa, Physica E 26 (2005) 217.
[4.19] S.S. Li et al., Phys. Rev. B 54 (1996) 11575.
[4.20] P. Yu, et al., Phys. Rev. B 60 (1999) 16680.
[4.21] K. Y. Chuang, C. Y. Chen, T. E. Tzeng, David J. Y. Feng and T. S. Lay, Journal of Crystal Growth. 311 (2009) 1767.
[4.22] V.V. Nikolaev, N.S. Averkiev, M.M. Sobolev, I.M. Gadzhiyev, I.O. Bakshaev, M.S. Buyalo, and E.L. Portnoi, Phys. Rev. B. 80 (2009) 205304.
[5.1]A. Luque and A. Marti, Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[5.2]A. Luque and A. Marti, Prog. Photovolt. Res. Appl., vol. 9, pp. 73-86, 2001.
[5.3]A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).
[5.4]V. Aroutiounian, S. Petrosyan, A. Khachatryan and K. Touryan, J. Appl. Phys. 89, 2268 (2001).
[5.5] R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 91, 243115 (2007).
[5.6]A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005).
[5.7] R. Oshima, A. Takata, and Y. Okada, Appl. Phys. Lett. 93, 083111 (2008).
[5.8]A. Luque, et al., Appl. Phys. Lett. 87, 083505 (2005).
[5.9] A. Marti, N. Lopez, E. Antolin, E. Canovas, A. Luque, C.R. Stanley, C.D. Farmer, and P. Diaz, Appl. Phys. Lett. 90, 233510 (2007).
[5.10] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, Appl. Phys. Lett. 92, 123512 (2008).
[5.11] P. Bhattacharya, Semicon&wtor Optoelectronic Devices, Prentice-
Hall, London, 1994, Chapter 9.
[5.12]T. Sugaya, O.Numakami, S.Furue, H.Komaki, T.Amano, K.Matsubara, Y.Okano, and S.Niki, Solar Energy Materials & Solar Cells 95, 2011, pp. 2920–2923.
[5.13]Greg Jolley, Hao Feng Lu, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish, Appl. Phys. Lett. 97, 2010, pp. 123505.
[5.14]Ryuji Oshima, Ayami Takata, and Yoshitaka Okada, Appl. Phys. Lett. 93, 2008, pp. 083111.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.205.146
論文開放下載的時間是 校外不公開

Your IP address is 3.135.205.146
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code