Responsive image
博碩士論文 etd-0731112-123300 詳細資訊
Title page for etd-0731112-123300
論文名稱
Title
具聚焦式指叉轉換器設計之彎曲平板波元件開發
Development of Flexural Plate-wave Device with Focused Interdigital Transducers Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-14
繳交日期
Date of Submission
2012-07-31
關鍵字
Keywords
微型感測元件、彎曲平板波、插入損失、指叉轉換器、體型微加工技術
microsensor, bulk micromachining, inter-digital transducers, insertion loss, flexural plate-wave
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
傳統彎曲平板波元件具有高質量靈敏度、低傳播速度與低操作頻率等優點,其缺點為插入損失高及製程良率低。本論文針對彎曲平板波元件之插入損失提出改善方法,包括探討傳統平行式與新型聚焦式指叉轉換器之幾何形狀對元件插入損失的影響,以及分析指叉轉換器之電極對數、焦距(聚焦式)與延遲線長度對元件插入損失的影響。
本論文運用體型微加工技術以開發一種低插入損失之彎曲平板波元件,主要製程步驟包含七次薄膜沉積與四次黃光微影製程。當波長設定為100 μm、指叉電極對數為20對、焦距為1000 μm以及延遲線長度為500 μm時,經由實驗結果發現,具傳統平行式與新型聚焦式指叉轉換器之彎曲平板波元件分別呈現-48 dB與-45.06 dB之插入損失,故可證明聚焦式指叉轉換器具有較佳的能量聚集效果。
另一方面,本研究就20對及25對電極對數的聚焦式指叉轉換器進行探討,發現具25對電極對數的彎曲平板波元件呈現較低之插入損失(-43.69 dB)。再者,比較三種不同焦距(500/1000/1500 μm)的聚焦式指叉轉換器,發現具500 μm焦距的聚焦式指叉轉換器可致使FPW元件之插入損失降低為-41.47 dB。本論文亦探討三種不同延遲線長度(250/500/750 μm)的聚焦式指叉轉換器,量測結果顯示,彎曲平板波元件若具有500 μm與750 μm延遲線長度的聚焦式指叉轉換器,則其插入損失分別可降為-40.46 dB與-40.95 dB。
最後,本論文以最佳化指叉轉換器設計之彎曲平板波元件(25對電極、500 μm焦距與500 μm延遲線長度之聚焦式指叉轉換器)進行微型感測元件之製作。當元件背部矽空腔分別蒸鍍沉積五種不同厚度之鋁金屬,可量得其質量感測靈敏度與線性度分別高達91.53 cm2/g與99.18 %,且其插入損失僅為-40.46 dB,故十分適合應用於生醫感測微系統。
關鍵字:彎曲平板波;插入損失;指叉轉換器;體型微加工技術;微型感測元件
Abstract
The conventional flexural plate-wave (FPW) device has advantages of high mass sensitivity, low phase velocity and low operation frequency. However, conventional FPW devices usually present a high insertion loss and low fabrication yield. This thesis aimed to reduce the insertion loss of conventional FPW devices. The influences of geometry of inter-digital transducers (IDTs), pair number of IDTs, depth of focus and length of delay line on the insertion loss of FPW device are investigated.
This research utilizes bulk micromachining technique to develop a low insertion-loss FPW device and the main fabrication steps include seven thin-film deposition and four photolithography processes. As the wavelength is 100 μm, pair number of IDTs is 20, depth of focus is 1000 μm and length of delay line is 500 μm, the measured insertion loss of the implemented FPW device with conventional parallel-type IDTs and novel focus-type IDTs are equal to -48 dB and -45.06 dB, respectively. On the other hand, the insertion loss of FPW device with focus-type 25-pairs IDTs (-43.69 dB) is smaller than that of FPW device with focus-type 20-pairs IDTs (-45.06 dB). Additional, the measured insertion loss of FPW device with 500 μm focus depth (-41.47 dB) is smaller than that of FPW devices with 1000 μm focus depth (-43.69 dB) or with 1500 μm focus depth (-45.39 dB). Furthermore, the FPW device with 500 μm delay line presents a smaller insertion loss (-40.46 dB) than that of FPW devices with 250 μm delay line (-41.47 dB) or with 750 μm delay line (-40.95 dB).
Finally, under the optimized specifications (focus-type/25 pairs IDTs, 500 μm focus depth and 500 μm delay line), the FPW-based microsensor demonstrates a high sensitivity (91.53 cm2/g), high sensing linearity (99.18 %) and low insertion loss (-40.46 dB), hence it is very suitable for development of biomedical sensing microsystem.
目次 Table of Contents
摘要 I
Abstract IV
致謝 VI
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與論文架構 4
第二章 FPW感測器與IDT理論 5
2-1 聲波元件簡介 5
2-1-1 在彈性介質中的波傳行為 5
2-1-2 聲波感測器種類與比較 7
2-2 FPW質量感測之理論推導 17
2-2-1 FPW無液體質量負載下之相速度理論推導 17
2-2-2 FPW於非黏滯性液體質量負載下之平板波相速度、質量 感測靈敏度以及頻率飄移量之理論推導 19
2-2-3 FPW於黏滯性液體質量負載下相速度之理論推導 21
2-3 壓電效應簡介與壓電薄膜選擇 22
2-3-1 壓電效應 22
2-3-2 壓電薄膜選擇 24
2-4 氧化鋅壓電薄膜晶格結構與特性之簡介 25
2-5 氧化鋅壓電薄膜沉積 26
2-5-1 氧化鋅薄膜沉積方式選擇 26
2-5-2 反應性射頻磁控濺鍍原理簡介 27
2-6 IDT電極設計理論 29
第三章 具聚焦式IDT設計之FPW元件設計與實驗方法 30
3-1 具聚焦式IDT設計之FPW元件設計 30
3-1-1 具聚焦式IDT設計之FPW元件光罩佈局設計 30
3-1-2 具聚焦式IDT設計之FPW元件光罩佈局設計規範 33
3-2 具聚焦式IDT之FPW元件製作 35
3-2-1 具聚焦式IDT設計之FPW元件製作流程 35
3-2-2 具聚焦式IDT設計之FPW元件製作方法 37
第四章 實驗結果與討論 45
4-1 FPW元件探針式量測平台簡介 45
4-2 FPW元件特性量測結果與分析 47
4-2-1 矽基板背面之KOH蝕刻時間對FPW元件中心頻率的影響 47
4-2-2 平行式與聚焦式IDT之FPW元件特性比較 48
4-2-3 具聚焦式IDT設計之FPW元件特性量測結果與分析 49
4-3 FPW感測器固態負載下之量測結果與分析 52
第五章 結論與未來展望 55
5-1 結論 55
5-2 未來展望 57
參考文獻 58
參考文獻 References
[1] 微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心,2003。
[2] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” London Mathematical Society, vol. 17, pp. 4-11, 1885.
[3] D.S. Ballantine and D. Stephen, “Acoustic wave sensor: theory, design, and physico-chemical applications,” San Diego, AcademicPress, Inc., 1997.
[4] M.J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics, vol. 36, pp. 7-14, 1998.
[5] M.E. Motamedi, R.M. White, “Acoustic sensor in semiconductor sensor,” John Wiely & Sons, Inc., New York, 1994.
[6] R.W. Cernosek, “An overview of acoustic wave devices for chemical & biological sensing, biological detection, and materials characterization,” Solid-State Sensor Lecture, Auburn University, Auburn, AL, 2002.
[7] 吳德春,薄膜式表面聲波元件之製作與分析,中原大學電子工程學系碩士論文,2002。
[8] D.W. Galipeau, P.R. Story, K.A. Vetelino and R.D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Materials and Structures, vol. 6, pp. 658-667, 1997.
[9] J.W. Gardner, V.K. Varadan and O.O. Awadelkarim, “Microsensors MEMS and smart devices,” John Wiely & Sons, Inc., New York, 2001.
[10] 余嘉銘,壓電彎曲平板波生物感測器,國立中正大學電機工程研究所碩士論文,2003。
[11] A. Pohl, “A review of wireless SAW sensors,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 317-332, 2000.
[12] T. Laurent, F.O. Bastien, J.C. Pommier, A. Cachard, D. Remiens and E. Cattan, “Lamb wave and plate mode in ZnO/silicon and AlN/silicon membrane application to sensors able to operate in contact with liduid,” Sensor and Actuator, vol. 87, pp. 26-37, 2000.
[13] S.W. Wenzel, B.A. Martin and R.M. White, “Generalized Lamb-wave multisensor,” IEEE Symposium on Ultrasonics, pp. 563-567, 1988.
[14] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sensors and Actuators B, vol. 132, pp. 340-348, 2008.
[15] H. Jia, R. Duhamel, J.F. Manceau, M.D. Labachelerie and F. bastien, “Improvement of lamb waves sensors temperature sensitivity compensation,” Sensors and Actuators A, vol. 121, pp. 321-326, 2005.
[16] M.S. Weinberg, C.E. Dube, A. Petrovich and A.M. Zapata, “Fluid damping in resonant flexural plate wave device,” Journal of Microelectromechanical Systems, vol. 12, No. 5, pp. 567-576, 2003.
[17] M.S. Weinberg, B.T. Cunningham, C.W. Clapp, “Modeling flexural plate wave device,” Journal of Microelectromechanical Systems, vol. 9, No. 3, pp. 370-379, 2000.
[18] 林素霞,氧化鋅薄膜的特性改良及應用之研究,國立成功大學材料科學及工程研究所博士論文,2003。
[19] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of zinc oxide thin film for surface acoustic wave filters by ratio frequency sputtering,” Vacuum, vol. 59, pp. 538-545, 2000.
[20] B.T.K. Yakub, J.G. Smits, T. Barbee, “Reactive magnetron sputtering of ZnO,” Journal of Applied Physics, vol. 52, pp. 4772-4774, 1981.
[21] 張鼎張譯,半導體製程技術導論,學銘圖書。
[22] 汪建民,材料分析,中國材料科學學會。
[23] 黃琇澤,以反應濺鍍法製備氧化鋅薄膜與摻雜鋁之研究,國立中山大學材料科學與工程研究所碩士論文,2003。
[24] 郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,國立中山大學電機工程學系碩士論文,2004。
[25] 蔡來福,以電漿輔助化學氣相沉積法室溫成長氧化鋅薄膜之研究,國立中央大學光電科學研究所碩士論文,2002。
[26] R.H. Tancrell and M.G. Holland, “Acoustic surface wave filters,” Proceedings of the IEEE, pp. 393-409, 1971.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.228.7.237
論文開放下載的時間是 校外不公開

Your IP address is 34.228.7.237
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code