Responsive image
博碩士論文 etd-0731112-173855 詳細資訊
Title page for etd-0731112-173855
論文名稱
Title
正交分頻多工系統中一種理想選擇性映射基於符元交織降低功率峰均比的架構
A suboptimal SLM based on symbol interleaving scheme for PAPR reduction in OFDM systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-27
繳交日期
Date of Submission
2012-07-31
關鍵字
Keywords
補累積分配函數、峰均值功率比、選擇性映射、正交分頻多工、符元交織
complementary cumulative distribution function, peak-to-average power ratio, Orthogonal frequency division multiplexing, symbol interleaving., selected mapping
統計
Statistics
本論文已被瀏覽 5663 次,被下載 308
The thesis/dissertation has been browsed 5663 times, has been downloaded 308 times.
中文摘要
正交分頻多工 (Orthogonal Frequency Division Multiplexing, OFDM) 系統是下一代行動通訊系統的標準,此系統其中一個主要的缺點為有較高的峰均值功率比 (Peak-to-Average Power Ratio, PAPR)。本論文主要討論在選擇性映射(Selected Mapping, SLM) 方法中提出一個低複雜度的架構。在參考文獻[27]中,由 Wang 提出利用完美序列 (Perfect Sequence) 形式的轉換向量設計出一低複雜度的架構,其可以達成在頻域上等振幅(Equal Gain)的特性。此一論文主要更進一步藉由考慮符元交織 (Symbol Interleaving) 降低訊號的相關性的方法,在時域上運用等效的特性設計一個低複雜度的架構來降低 PAPR。由模擬結果可知,雖然所提出的架構需付出額外的運算複雜度,但是所提出架構的補累積分配函數(Complementary Cumulative Distribution Function, CCDF) 效能比Wang[27] 提出的架構更接近於傳統的 SLM 方法,且所提出架構的運算複雜度也遠低於傳統的 SLM 方法。
Abstract
Orthogonal frequency division multiplexing (OFDM) system is the standard of next generation mobile communication, one of the major drawbacks of OFDM systems is the peak-to-average power ratio (PAPR). In this paper, we proposed a low complexity Selected mapping (SLM) scheme to reduce PAPR. In [27], Wang proposed a low complexity SLM scheme by utilizing conversion vectors having
the form of a perfect sequence to solve the problem that phase rotation vectors of the conversion vectors do not usually have an equal magnitude in frequency domain. This paper proposed a low complexity SLM scheme based on perfect sequence and consider the symbol interleaving to reduce the correlation between signals in time domain. It is shown that the (Complementary Cumulative Distribution Function, CCDF) of our proposed scheme are closer to the
traditional SLM scheme than Wang’s in [27] but with additional complexity. And the computational complexity is much lower than traditional SLM.
目次 Table of Contents
第一章 導論................................................................................................................1
1.0 引言................................................................................................................1
1.1 研究動機........................................................................................................1
1.2 論文架構........................................................................................................2
第二章 系統架構.......................................................................................................3
2.0 引言................................................................................................................3
2.1 正交分頻多工系統的架構............................................................................3
2.2 反離散傅立葉轉換的應用…........................................................................6
2.4 OFDM訊號的峰均值功率比........................................................................7
第三章 常見的降低PAPR方法................................................................................10
3.0 引言..............................................................................................................10
3.1 常見的降低PAPR方法...........................................................10
3.2 傳統SLM架構.............................................................................................11
3.3 Wang和Ouyang提出的低複雜度SLM架構.............................................12
3.3 基於完美序列的低複雜度SLM架構............................................14
第四章 新低複雜度SLM架構.....................................................................18
4.0 引言..............................................................................................................18 4.1 系統的時域特性.......................................................................................18
4.2 低複雜度SLM架構.........................................................................25
第五章 系統架構的複雜度分析..................................................................33
5.0 引言...........................................................................................................31
5.0 提出的架構的複雜度分析..........................................................................31
第六章 PAPR效能模擬分析...........................................................35

第七章 結論..................................................................................................39
中英對照表..................................................................................................40
全名縮寫對照表..................................................................................................44
參考文獻..................................................................................................45






















圖目錄
圖2.1 傳統正交分頻多工系統傳送端架構........……………................................4
圖2.2 傳統正交分頻多工系統接收端架構........……………................................4
圖3.1 傳統的SLM架構.........................................................................................12
圖3.2 W&O的架構一(W&O Scheme I)...............................................................13
圖3.3 W&O的架構二(W&O Scheme II)..............................................................14
圖3.4 低複雜度SLM架構圖[27]..............................................................16
圖4.1 時域上對應頻域訊號共軛示意圖.............................................................21
圖4.2 頻域訊號示意圖........................................................................22
圖4.3 低複雜度傳送端架構示意圖................................................................26
圖4.4 訊號分割方塊示意圖..........................................................................27
圖4.5 訊號產生器步驟I 示意圖.......................................................27
圖4.6 訊號結合I方塊示意圖..............................................................28
圖4.7 等間隔4配置的訊號圖...............................................................28
圖4.8 訊號產生器步驟II示意圖......................................................29
圖4.9 訊號結合器步驟II示意圖..................................................29
圖5.1 運算複雜度示意圖....................................................................33
圖6.1 提出的架構( )與其他架構的PAPR效能比較..................36
圖6.2 提出的架構( )與其他架構的PAPR效能比較...................36
圖6.3 提出的架構( )未經過符元交織的PAPR效能比較...................37
圖6.4 提出的架構( )與提出的架構( )PAPR效能比較圖.............38




表目錄
表3.1 當 , 及 值....................................................................17
表4.1 不同區塊下 的值...................................................................................20
表4.2 訊號反轉的情形...................................................................................20
表4.3 相位旋轉序列...................................................................................21
表5.1 不同架構下的複雜度..................................................................................32
表5.2 計算複雜度降低比例 ............................................................34
表5.3 系統降PAPR運算複雜度.....................................................................34
參考文獻 References
[1] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std 802.16-2004, Oct. 2004.
[2] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[3] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[4] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Trans. Wireless Commun., vol. 12, pp. 56–65, Apr. 2005.
[5] D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun., vol. 47, no. 1, pp. 18–21, Jan. 1999.
[6] X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, May 1998.
[7] D. Wulich, “Peak factor in orthogonal multicarrier modulation with variable levels,” Electron. Lett., vol. 32, no. 20, pp. 1859–1860, Sep. 1996.
[8] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett., vol. 38, no. 8, pp. 246–247, Feb. 2002.
[9] A. E. Jones, T.A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme,” Electron. Lett., vol. 30, no. 22, pp. 2098–2099, Dec. 1994.
[10] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE. Trans. Info. Theory, vol. 45, no. 7, pp. 2397–2417, Nov. 1999.
[11] K. Patterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE. Trans. Info. Theory, vol. 46, no. 1, pp. 104–120, Jan. 2000.
[12] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communication,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, Jan. 2000.
[13] J. A. Davis and J. Jedwab, “Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes,” Electron. Lett., vol. 33, no. 4, pp. 267–268, Feb. 1997.
[14] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes with low peak-to-average power ratios,” IEEE Trans. Info. Theory, vol. 46, no. 6, pp. 1974–1987, Sep. 2000.
[15] C. V. Chong and V. Tarokh, “A simple encodable/decodable OFDM QPSK code with low peak-to-mean envelope power ration,” IEEE. Trans. Info. Theory, vol. 47, no. 7, pp. 3025–3029, Nov. 2001.
[16] T. Ginige, N. Rajatheva, and K. M. Ahmed, “Dynamic spreading code selection method for PAPR reduction in OFDM-CDMA systems with 4-QAM modulation,” IEEE. Commun. Lett., vol. 5, no. 10, pp. 408–410, Oct. 2001.
[17] K.Yang and S. Chang, “Peak-to-average power control in OFDM using standard arrays of linear block codes,” IEEE. Commun. Lett., vol. 7, no. 4, pp. 174–176, Apr. 2003.
[18] S. B. Slimane, “Reducing the peak-to-average power ratio of OFDM signals through precoding,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 686–695, Mar. 2007.
[19] R. W. Baüml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp. 2056–2057, Oct. 1996.
[20] M. Breiling, S. H. Müller, and J. B. Huber, “SLM peak-power reduction with explicit side information,” IEEE. Commun. Lett., vol. 5, pp. 239–241, Jun. 2001.
[21] C.-L. Wang, C.-J Yang, S.-J. Ku, and C.-H. Liu, “A low-complexity peak-to-average power ratio estimation method for OFDM signals,” in Proc. IEEE Veh. Technol. Conf.- Fall (VTC 2006-Fall), Montreal, QC, Canada, Sep. 2006, pp. 1–5.
[22] C.-L. Wang, S.-J Ku, and C.-J Yang “An improved peak-to-average power ratio estimation scheme for OFDM systems,” in Proc. IEEE Veh. Technol. Conf.- Spring (VTC 2007-Spring), Dublin, Ireland, Apr. 2007, pp. 2827–2831..
[23] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652–4660, Dec. 2005.
[24] S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804–808, Dec. 2007.
[25] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, Sep. 2004.
[26] L. Yang, K. K. Soo, Y. M. Siu, and S. Q. Li , “A low complexity selected mapping scheme by use of time domain sequence superposition technique for PAPR reduction in OFDM system,” IEEE Trans. Broadcast., vol. 54, no. 4, pp. 821–824, Dec. 2008.
[27] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[28] D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93–96, Feb. 2005.
[29] S. S. Yoo, S. Yoon, S. Y. Kim, and I. Song, “A novel PAPR reduction scheme for OFDM systems: Selective mapping of partial tones (SMOPT),” IEEE Trans. Consum. Electron., vol. 52, no. 1, pp. 40–43, Feb. 2006.
[30] S. W. Kim, H. S. H. Byeon, J. K. Kim, and H.-G. Ryu, “An SLM-based real-time PAPR reduction method using dummy sequence insertion in the OFDM communication,”in Proc. IEEE. Int. Conf. Inform. Commun. Signal Process. (ICICS 2005), Bangkok, Thailand, Oct. 2005, pp. 258–262.
[31] S.-H. Wang, J.-C. Sie, and C.-P. Li, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242–1251, Apr. 2011.
[32] A. Ghassemi and T. A. Gulliver, “Partial selective mapping OFDM with low complexity IFFTs,” IEEE Commun. Lett., vol. 12, no. 1, pp. 4–6, Jan. 2008.
[33] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161–1166, Mar. 2008.
[34] S. H. Müller and J. B. Huber, “OFDM with reduced pear-to-average power ratio by optimum combination of partial transmit sequence,” Electron. Lett., vol. 33, pp. 368–369, Feb. 1997.
[35] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 9, pp. 333–338, Sep. 1999.
[36] L. J. Cimini Jr. and N. R. Sollenberger, “Peak-to-average power ration reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86–88, Mar. 2000.
[37] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Electron. Lett., vol. 36, no. 14, pp. 1226–1228, Jul. 2000.
[38] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, Apr. 2001.
[39] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887–890, Nov. 2004.
[40] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83–86, Mar. 2006.
[41] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.
[42] B. Krongold and D. Jones, “An active-set approach for OFDM PAR reduction via tone reservation,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 495–509, Feb. 2004.
[43] J.-C. Chen and C.-P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 17, no. 11, pp. 933–936, Nov. 2010.
[44] J.-C. Chen, M.-H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. on Broadcasting, vol. 57, no. 3, pp. 752–756, Sept. 2011.
[45] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, pp. 258–268, Sep. 2003.
[46] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston: Artech House, 2000.
[47] C. Tellambura, “Computation of the continue-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185–187, May 2001.
[48] R. L. Frank and S. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inform. Theory, vol. IT-8, pp. 381–382, Oct. 1962.
[49] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 531–532, Jul. 1972.
[50] S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941–944, Nov. 2009.
[51] C.-P. Li, S.-H. Wang, and K.-C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, issue 6, pp. 1712–1718, 2012.
[52] C.-P. Li, S.-H. Wang, and K.-H. Tsai, “A low complexity transmitter architecture and its application to PAPR reduction in SFBC MIMO-OFDM systems,” in Proc. IEEE International Conference on Communications (IEEE ICC 2010), Cape Town, South Africa, 23–27 May, 2010.
[53] H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, no. 2, pp. 282–289, Feb. 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code