Responsive image
博碩士論文 etd-0731112-182742 詳細資訊
Title page for etd-0731112-182742
論文名稱
Title
以電漿輔助分子束磊晶系統成長之氮化錳鎵奈米柱特性研究
Characterization and Growth of GaMnN Nanorods Grown by Plasma-Assisted Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-10
繳交日期
Date of Submission
2012-07-31
關鍵字
Keywords
分子束磊晶、氮化鎵、奈米柱、氮化錳鎵、稀磁性半導體
MBE, GaN, Nanocolumn, DMS, Nanorod, GaMnN
統計
Statistics
本論文已被瀏覽 5741 次,被下載 128
The thesis/dissertation has been browsed 5741 times, has been downloaded 128 times.
中文摘要
本文使用電漿輔助分子束磊晶(PAMBE)系統,在[111]軸向矽基板上分別使用均勻摻雜與脈衝摻雜(δ-doping)的模式成長氮化錳鎵奈米柱,並且成功生長出氮化錳鎵稀磁性半導體。稀磁性半導體的發展中,次要相的形成一直是稀磁性半導體磁性來源研究的重要議題,藉由奈米柱生長可有效提高材料品質與避免缺陷產生,可能在次要相形成的議題上有所突破,且奈米柱的尺寸符合未來元件的趨勢,綜合以上兩點,故選擇以奈米柱成長稀磁性半導體。關於樣品的結構與特性將透過掃描式電子顯微鏡(SEM)、能量散佈分析儀(EDS)、x射線繞射(XRD)、穿透式電子顯微鏡(TEM)、拉曼(Raman)散射、超導量子干涉儀(SQUID)與x光光電子能譜儀(XPS)的量測進行分析。
從掃描式電子顯微鏡影像得知以脈衝摻雜且鎵與錳的成長時間比例為20成長的氮化鎵奈米柱高度約為1500 奈米,透過能量散佈光譜儀與x光光電子能階儀量測証實,錳成功地摻雜進氮化鎵奈米柱,並從x射線繞射證實在儀器極限下並無次要相形成,拉曼散射顯示錳在氮化鎵奈米柱裡成功地取代鎵在六角柱晶體裡的位置,同時在穿透式電子顯微鏡圖像也並無觀察到微區次要相的形成。以此前提下,在超導量子干涉儀量測磁場與磁矩的關係圖下,顯現出鐵磁性的現象,表示氮化錳鎵奈米柱的成長中,脈衝摻雜確實提供氮化錳鎵材料的稀磁性半導體一個方法,成長出良好的形貌及阻絕次要相的形成。
Abstract
In this work, Mn atoms are doped into GaN nanorods by two doping types, homogeneous and delta doping, and GaN nanorods are grown on Si (111) substrate using plasma-assisted MBE. The GaMnN nanorods are characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution x-ray diffraction (HR-XRD), Raman scattering, Transmission electron microscopy (TEM), superconducting quantum interference device (SQUID), and x-ray photoelectron spectroscopy (XPS).
The Mn delta-doping GaN nanorods with Ga/Mn growth time ratio 20 are approximately 1500 nm in height, grown along the c-axis. The Mn concentration in nanorods is determined to be 0.83% by EDS, without secondary phase formation. The Mn atoms substitute Ga sites in the GaN wurtzite hexagonal structure and, according to the results of Raman, there is no observable Mn-N cluster formation existed. The delta-doping structure, without secondary phase inclusions, can be observed under TEM imaging of the nanorods. The nanorods appear to show ferromagnetic behavior at room temperature, as judged by the M-H with hysteresis curve, however the small the loops are. The delta-doping is adopted in this thesis work to fabricate GaMnN DMS nanorods without secondary phase formation.
目次 Table of Contents
Abstract in Chinese
Abstract
Motivation 1
Chapter 1 A Synopsis of the DMS History 2
1.1 Introduction of DMS 2
1.2 The Development of DMS 3
1.3 Applications and Devices 7
Chapter 2 Introduction of Measurement System 10
2.1 Scanning Electron Microscope, SEM 10
2.2 Energy Dispersive Spectrometer, EDS 15
2.3 X-Ray Diffraction, XRD 16
2.4 Raman Scattering 18
2.5 X-ray Photoelectron Spectroscopy, XPS 20
2.6 Superconducting Quantum Interference Device, SQUID 21
2.7 Transmission Electron Microscopy, TEM 22
Chapter 3 Sample Introduction 23
3.1 GaMnN Structure 23
3.2 Growth Type 24
Chapter 4 Results and Discussion for Homogenous Doping Sample 25
4.1 Growth Parameter and Morphology 25
4.2 Results and Discussion 28
4.2.1 Energy Dispersive Spectrometer (EDS) Measurement 28
4.2.2 X-ray Photoelectron Spectroscopy (XPS) Measurement 30
4.2.3 X-ray Diffraction (XRD) Measurement 33
4.2.4 Raman Scattering Measurement 35
4.3 Summary 36
Chapter 5 Results and Discussion for Delta-Doping Sample 37
5.1 Growth Parameter and Morphology 37
5.2 Results and Discussion 40
5.2.1 Energy Dispersive Spectrometer (EDS) Measurement 40
5.2.2 X-ray Photoelectron Spectroscopic Measurement 42
5.2.3 X-Ray Diffraction (XRD) Measurement 43
5.2.4 Raman Scattering Measurement 44
5.2.5 TEM Measurement 45
5.2.6 Magnetic Properties 48
5.3 Summary 50
Chapter 6 Conclusion 51
Reference 52
參考文獻 References
1. T. Dietl, edited by B. Kramer (Springer Berlin / Heidelberg, 2003), Vol. 43, pp. 41-64.
2. T. Dietl, Nat Mater 9 (12), 965-974 (2010).
3. J. S. Kulkarni, O. Kazakova and J. D. Holmes, Applied Physics A 85 (3), 277-286 (2006).
4. M. Kaminska, A. Twardowski and D. Wasik, Journal of Materials Science: Materials in Electronics 19 (8-9), 828-834 (2007).
5. V. Avrutin, N. Izyumskaya, x, zgu, x, U. r, D. J. Silversmith, Morko, x00E and H., Proceedings of the IEEE 98 (7), 1288-1301 (2010).
6. T. Dietl, Science 287 (5455), 1019-1022 (2000).
7. J. K. Furdyna, Journal of Applied Physics 64 (4), R29-R64 (1988).
8. D. Ferrand, J. Cibert, C. Bourgognon, S. Tatarenko, A. Wasiela, G. Fishman, A. Bonanni, H. Sitter, S. Koleśnik, J. Jaroszyński, A. Barcz and T. Dietl, Journal of Crystal Growth 214–215 (0), 387-390 (2000).
9. K. Sato, P. H. Dederichs, H. Katayama-Yoshida and J. Kudrnovsky, Physica B: Condensed Matter 340-342, 863-869 (2003).
10. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. Chang and L. Esaki, Physical Review Letters 63 (17), 1849-1852 (1989).
11. H. Ohno, H. Munekata, T. Penney, S. von Molnar and L. Chang, Physical Review Letters 68 (17), 2664-2667 (1992).
12. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, Applied Physics Letters 69 (3), 363 (1996).
13. M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts and S. M. Bedair, Applied Physics Letters 79 (21), 3473 (2001).
14. K. Sato and H. Katayama-Yoshida, Physica B: Condensed Matter 308–310 (0), 904-907 (2001).
15. F. L. Deepak, P. V. Vanitha, A. Govindaraj and C. N. R. Rao, Chemical Physics Letters 374 (3–4), 314-318 (2003).
16. H. J. Choi, H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall and P. Yang, Advanced Materials 17 (11), 1351-1356 (2005).
17. P. V. Radovanovic, C. J. Barrelet, S. Gradečak, F. Qian and C. M. Lieber, Nano letters 5 (7), 1407-1411 (2005).
18. A. Urban, J. Malindretos, M. Seibt and A. Rizzi, Nano letters 11 (2), 398-401 (2011).
19. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature 402 (6763), 790-792 (1999).
20. S. Datta and B. Das, Applied Physics Letters 56 (7), 665-667 (1990).
21. Z. Wang, B. Huang, L. Yu, Y. Dai, P. Wang, X. Qin, X. Zhang, J. Wei, J. Zhan, X. Jing, H. Liu and M.-H. Whangbo, Journal of the American Chemical Society 130 (48), 16366-16373 (2008).
22. A. Majid, R. Sharif, G. Husnain and A. Ali, Journal of Physics D: Applied Physics 42 (13), 135401 (2009).
23. B. Hu, B. Y. Man, C. Yang, M. Liu, C. S. Chen, X. G. Gao, S. C. Xu, C. C. Wang and Z. C. Sun, Applied Surface Science 258 (1), 525-529 (2011).
24. W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko and S. Podsiadło, Applied Physics Letters 76 (26), 3870 (2000).
25. X. Q. Xiu, R. Zhang, B. B. Li, Z. L. Xie, L. Chen, B. Liu, P. Han, S. L. Gu, Y. Shi and Y. D. Zheng, Journal of Crystal Growth 292 (2), 212-215 (2006).
26. H. Harima, Journal of Physics: Condensed Matter 16 (48), S5653-S5660 (2004).
27. M. Asghar, I. Hussain, E. Bustarret, J. Cibert, S. Kuroda, S. Marcet and H. Mariette, Journal of Crystal Growth 296 (2), 174-178 (2006).
28. X. G. Cui, Z. K. Tao, R. Zhang, X. Li, X. Q. Xiu, Z. L. Xie, S. L. Gu, P. Han, Y. Shi and Y. D. Zheng, Applied Physics Letters 92 (15), 152116 (2008).
29. M. Zaja̧c, R. Doradziński, J. Gosk, J. Szczytko, M. Lefeld-Sosnowska, M. Kamińska, A. Twardowski, M. Palczewska, E. Grzanka and W. Gȩbicki, Applied Physics Letters 78 (9), 1276 (2001).
30. C.-L. Hsiao, L.-W. Tu, T.-W. Chi, M. Chen, T.-F. Young, C.-T. Chia and Y.-M. Chang, Applied Physics Letters 90 (4), 043102 (2007).
31. T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide and K. Manabe, Journal of Applied Physics 75 (2), 1098 (1994).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code