Responsive image
博碩士論文 etd-0731112-231225 詳細資訊
Title page for etd-0731112-231225
論文名稱
Title
利用氮化物高電子遷移率場效電晶體製作生物感測器偵測胰臟癌抗原分子
Fabrication of nitride-based high electron mobility transistor biosensor to detect pancreatic cancer antigen
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-10
繳交日期
Date of Submission
2012-07-31
關鍵字
Keywords
生物感測器、胰臟癌、鏈黴親和素、生物素、高電子遷移率、場效電晶體、矽奈米柱
silicon nanorod, biotin, field effect transistor, streptavidin, pancreatic cancer, Biosensor, high electron mobility transistor
統計
Statistics
本論文已被瀏覽 5756 次,被下載 526
The thesis/dissertation has been browsed 5756 times, has been downloaded 526 times.
中文摘要
摘要
生物感測晶片具有免螢光標記、高靈敏度、高選擇性、快速且即時檢測之優點。發展生物感測器晶片對於基因檢測、蛋白質檢測、生醫診斷及研發新治療藥物有相當大的助益。本研究將整合生醫、化學、物理等知識,並結合生化科技和半導體技術來製作生物感測晶片。
  本研究主要分為兩個部分: 第一個部分為利用微電子半導體製程技術成功製作出矽奈米線場效電晶體(SiNW-FET),由源極-汲極電流對電壓(Isd-Vsd)量測結果可得知矽奈米線與電極金屬形成歐姆接觸。並透過化學表面修飾技術將矽奈米線場效電晶體表面修飾生物素(biotin)受體於晶片上,藉以感測標的分子鏈黴親和素(streptavidin)。
  另一部分,本研究亦成功以分子束磊晶的方式成長出AlGaN/GaN薄膜,並同樣利用微電子半導體製程技術製作出氮化物高電子遷移率電晶體(HEMT)。本研究中利用HEMT作為生物感測器晶片,並在晶片表面修飾胰臟癌標記物CA19-9抗體,偵測胰臟癌標記物CA19-9抗原分子。
  大部分生物分子本身會帶有微量電荷,透過化學閘極效應可使p-type矽奈米線之電導率產生變化。由實驗結果得知本實驗所製作之矽奈米線生物感測晶片偵測鏈黴親和素之極限為10-9 M。而HEMT生物感測器晶片偵測胰臟癌標記物CA19-9抗原分子之極限為150 U/mL。
Abstract
Abstract
  Biosensor chip has a lot of advantages, such as label-free, ultra-sensitive, highly selective, fast and real-time detection. Fabricating biosensor chip has great benefits for gene-detection, protein-detection, medical diagnosis and development of new medicine. This research will integrate the biomedical, chemistry, and physics, and also combined with biochemical technology and semiconductor technology to produce biosensor chip.
  We use microelectronic semiconductor process technology to fabricate silicon nanowire field effect transistors (SiNW-FET). The source-drain current versus the voltage curve (Isd-Vsd) shows that the contact pad and the silicon nanowire form ohmic contact. And then we use chemical surface modification technologies to modified biotin on SiNW-FET to detect streptavidin.
  In addition, we also grow AlGaN/GaN film by MBE, and fabricate nitride–based high electron mobility transistor (HEMT) by microelectronic semiconductor process technology. In this study, we apply HEMT in biosensor for pancreatic cancer marker CA19-9 antigen. And we modify pancreatic cancer marker CA19-9 antibody on the biosensor chip surface to detect pancreatic cancer marker CA19-9 antigen molecule.
  Most of biomolecules are with weak charges, which can form chemical gating effect and change the conductance of p-type SiNW. And according to the streptavidin microfluidic measurement of biotin-modified SiNW-FET, the detection limit of streptavidin was 10-9 M. And the detection limit of pancreatic cancer marker CA19-9 antigen for N-HEMT biosensor was 150 U/mL.
目次 Table of Contents
論文審定書 ........................................................................................................................i
Acknowledge ................................................................................................................... ii
摘要 ................................................................................................................................ iii
Abstract ...........................................................................................................................iv
Contents ...........................................................................................................................vi
Figure list .........................................................................................................................ix
Table list ........................................................................................................................ xii
Chapter 1 Introduction ................................................................................................... 1
1-1 Background and motivation ............................................................................... 1
1-2 Introduction of silicon nanorod field effect transistor (SiNR-FET) .................. 4
1-3 Introduction of nitride-based high electron mobility transistor (HEMT) .......... 7
1-4 Introduction of biosensor chip development ................................................... 10
1-5 Introduction of surface modification technique ............................................... 15
Chapter 2 Equipment setup and biosensor chip process ........................................... 19
2-1 Equipment setup .............................................................................................. 19
2-2 Silicon nanorods (SiNRs) fabrication .............................................................. 29
2-3 Al0.30Ga0.70N/GaN growth conditions .............................................................. 31
vii
2-4 Process flowchart of SiNR-FET fabrication .................................................... 33
2-5 Process flowchart of HEMT fabrication .......................................................... 41
2-6 Fabrication of microfluidic delivery channel................................................... 42
2-7 Introduction of chemicals compounds and configuration................................ 44
Chapter 3 Experimental design .................................................................................... 49
3-1 Introduction of detection principle .................................................................. 49
3-2 Basic electrical measurement ........................................................................... 50
3-3 Surface modification parameter ....................................................................... 51
Chapter 4 Result and discussion of SiNR-FET biosensor chip ................................. 53
4-1 Demonstration of surface modification ........................................................... 53
4-2 SiNR-FET biosensor light sensitivity test ....................................................... 56
4-3 Control experiment result ................................................................................ 60
4-4 Streptavidin microfluidic experiment .............................................................. 62
4-5 Enhance the detection limit of SiNR-FET biosensor....................................... 65
Chapter 5 Result and discussion of HEMT biosensor chip ....................................... 68
5-1 Demonstration of surface modification ........................................................... 68
5-2 Control experiment result ................................................................................ 70
5-3 CA19-9 antigen microfluidic experiment ........................................................ 71
viii
Chapter 6 Conclusion .................................................................................................... 74
Appendix A 金線焊線機操作手冊 ............................................................................... 77
Appendix B 微流體推進器操作手冊 ........................................................................... 87
Appendix C 電性量測設備與軟體介紹 ....................................................................... 94
Appendix D 流體實驗量測設備與軟體介紹 ............................................................. 103
Reference ...................................................................................................................... 109
參考文獻 References
1 吳其昌、蘇丁香、柯富祥、劉福坤、歐耿良、呂明霈、潘同明、莊正鏗、馮思中, '以矽奈米線場效電晶體偵測癌症相關變異基因', 奈米通訊, 17卷 No. 2, (2010).
2 Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber, 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species', SCIENCE, vol.293, 1289-1292, (2001).
3 F. Patolsky, G. Zheng, C. M. Lieber, 'Fabrication of silicon nanowire device for ultrasensitive, label-free, real-time detection of biological and chemical species', Nature protocols, vol.1, No.4, 1711-1724, (2006).
4 U. K. Mishra, P.Parikh, Y. F. Wu, 'AlGaN/GaN HEMTs-An overview of device operation and applications', Proc. IEEE, vol.90, 1022-1031, (2002).
5 B. H. Chu, Y. L. Wang, H. T. Wang, C. Y. Chang, C. F. Lo, S. J. Pearton, G. Papadi, J. K. Coleman, B. J. Sheppard, C. F. Dungen, Kevin Kroll, Nancy Denslow, A. Dabiran, P. P. Chow, J. W. Johnson, E. L. Pine, K. J. Linthicum, and F. Ren, 'AlGaN/GaN High Electron Mobility Transistor Based Sensors for Environmental and Bio-Applications', Nanoscience and nanotechnology letters, vol.2, 120-128, (2010).
6 M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C. E. Nebel, J. Schalwig, R. Neuberger, G. Muller, 'GaN-base heterostructure for biosensor applications', Diamond andrelated materials, vol.11, 886-891, (2002).
7 R. Gaska, M. S. Shura, A. D. Bykhovski, A. O. Orlov, G. L. Snider, 'Electron
110
mobility in modulation-doped AlGaN/GaN heterostructure', Applied physics letters, vol.74, No.2, 287-289, (2002).
8 N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeltd, A. E. Karlstrom, J. Linnros, ' Surface Charge Sensitivity of Silicon Nanowires: Size Dependence', Nano Letters, vol.7, 2608-2612, (2007).
9 D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, ' Electrochemical Biosensors - Sensor Principles and Architectures', Sensors, vol.8, 1400-1458, (2008).
10 Shu-Ping Lin, Chien-Yuan Pan, Kun-Chang Tseng, Ming-Chou Lin, Chii-Dong Chen, Chia-Chang tsai, Shu-Han Yu, Ying-Chieh Sun, Tsung-Wu Lin, Yit-Tsong Chen, 'A reversible surface functionalized nanowire transistor to study proteun-protein interactions', Nano today, vol.4, 235-243, (2009).
11 A. M. Morales, Charles M. Lieber, ' A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires ', Science, vol.279, 208-211, (1998).
12 J. T. Hu, Y. W. Odom, Charles M. Lieber, 'Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes', Accounts of chemical research, vol.32, 435-445, (1999).
13 F. M. Raymo, I. Yildiz, ' Luminescent chemosensors based on semiconductor quantum dots ', Physical chemistry chemical physics, vol. 9, 2036-2043, (2007).
14 X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, Charles M. Lieber, ' Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices', Nature, vol.409, 66-69, (2001).
15 B. S. Kang, H. T. Wang, T. P. Lele, Y. Tseng, F. Ren, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner and K. J. Linthicum, 'Prostate specific
111
antigen detection using AlGaN/GaN high electron mobility transistors', Applied Physics Letters 91, 112106-1 – 112106-3, (2007).
16 K. H. Chen, B. S. Kang, H. T. Wang, T. P. Lele, F. Ren,ı Y. L. Wang, C. Y. Chang, S. J. Pearton, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, 'c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection', Applied physics letters, vol.92, 192103-1 – 192103-3, (2008).
17 張哲魁、葛威成、張正宏、陳惠民, '自組裝單層膜(SAM)技術在新生物晶片上的發展', 奈米通訊, 14卷 No.3, (2007)
18 M. C. Lin, C. J. Chu, L. C. Tsai, H. Y. Lin, C. S. Wu, Y. P. Wu, Y. N. Wu, D. B. Shieh, Y. W. Su, and C. D. Chen, 'Control and Detection of Organosilane Polarization on Nanowire Field-Effect Transistors', Nano Lett., vol.7, 3656–3661, (2007).
19 王冠人, 矽奈米線陣列製程與光伏元件之應用, 國立台灣大學理學院物理學系碩士論文, (2009).
20 楊婉玲、李博仁、陳逸聰, '無標記奈米級生物感測器', 化學, 96卷 第三期, 199-209, (2011)
21 呂國豪, 戴達夫, '人類血漿蛋白的診斷背景', 化學, vol.64, No.1, 119-128, (2006).
22 T. Malati, 'TUMOUR MARKERS: AN OVERVIEW', Indian Journal of Clinical Biochemistry, vol.22, No.2, 17-31, (2007).
23 T. Sano, C.L. Smith, C.R. Cantor, 'Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates', Science, vol.258, 120-122, (1992).
24 C. B. Winkelmann, I. Ionica, X. Chevalier, G. Royal, C. Bucher, V. Bouchiat, 'Optical Switching of Silicon Nanowire Field Effect Transistors', Nano letters, vol.
112
7, No. 6, 1454-1458, (2007)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code