Responsive image
博碩士論文 etd-0731114-180308 詳細資訊
Title page for etd-0731114-180308
論文名稱
Title
數位影像相關法於鈀金屬不同溫度下之熱膨脹係數量測
DIC on the Thermal Expansion Coefficient Measurements of Palladium at Different Temperature Levels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-11
繳交日期
Date of Submission
2014-09-03
關鍵字
Keywords
溫度效應、熱膨脹係數、鈀金屬、數位影像相關法、三次多項式
Cubic polynomial, Temperature effect, Thermal expansion coefficient, Palladium, Digital image correlation
統計
Statistics
本論文已被瀏覽 5663 次,被下載 630
The thesis/dissertation has been browsed 5663 times, has been downloaded 630 times.
中文摘要
傳統IC封裝使用金作為打線接合的主要材料,近年來金價上漲導致封裝業者積極開發銅打線接合技術,而銅打線接合技術於銅球表面鍍鈀金屬,除了可以防止銅球表面氧化,還可以提高打線接合強度,並維持打線過後的線球形狀,同時降低生產成本。現今電腦硬體設備的提升以及套裝軟體的使用,使我們可以利用有限元素法模擬的方式來解決複雜的問題,然而執行數值模擬前必須輸入各材料之基本機械參數,才可有效的進行其模擬與分析。然而鈀金屬在高溫下之熱膨脹係數目前均無相關實驗結果,只有部分參考文獻中有提及利用常溫以下(-243℃~-3℃)之鈀金屬熱膨脹係數實驗值將其外插至常溫以上之範圍(20.15℃~227℃)。故本研究主要目的在利用數位影像相關法量測從室溫30℃至200℃不同溫度下之鈀金屬熱膨脹係數。實驗結果顯示,本研究所得之鈀金屬熱膨脹係數實驗值與文獻中提供的外插值之偏差會隨著溫度變化之增加而增加,當溫度增加170℃時,偏差量高達19.34%,顯示文獻所提供之數據有修正之必要;本研究並結合文獻中所提供常溫以下之實驗數據與本研究所得常溫以上之實驗數據形成一新的三次多項式可預測鈀金屬從-243℃至200℃之熱膨脹係數。
Abstract
In traditional IC packaging, wire bonding is typically performed using gold. In recent years, increasing gold prices have motivated the packaging industry actively to develop copper wire bonding technology. Coating copper wire bonding with palladium can prevent oxidation of the copper wire, increase its strength, maintain ball shape after bonding, and reduce production cost. Computers are currently used to perform simulations using the finite element method to solve complex problems. However, basic mechanical parameters of the material must be entered into the relevant program before simulation and analysis can be effectively performed. Some of the literatures provide experimental values of the thermal expansion coefficient of palladium at low temperature, from -243℃ to -3℃,which are used to determine, by extrapolation the thermal expansion coefficient at high temperatures from 20.15℃ to 227℃. However, no experimental results on the thermal expansion coefficient of palladium at high temperatures have been obtained. This investigation measures the thermal expansion coefficient of palladium at various temperature, from 30℃ to 200℃, using digital image correlation. The experimentally obtained thermal expansion coefficient of palladium and its deviation from extrapolated values in the literature increased with temperature. At temperature of 170℃, the deviation was 19.34%, indicating that the data extrapolated from the literature must be revised. Best fitting a combination of experimental data at low temperature in the literature and experimental data herein yields a cubic polynomial which can predict the thermal expansion coefficient of palladium from -243℃ to 200℃.
目次 Table of Contents
致 謝 ii
摘 要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 鈀金屬在IC封裝上的用途 2
1.2.2 數位影像相關法的起源 3
1.2.3 數位影像相關法之應用 4
1.2.4 數位影像相關法於熱變形量測 6
1.2.5 熱膨脹係數量測 9
1.3 全文架構 11
第二章 基礎理論 18
2.1 熱膨脹係數之定義 18
2.2 數位影像相關法 19
2.2.1 影像圖片資訊 19
2.2.2 影像重建 20
2.2.3 物體平面變形理論 21
2.2.4 影像相關原理 22
2.2.5 求取最佳位移函數 23
2.2.6 影像特徵搜尋 25
第三章 實驗方法 30
3.1 實驗儀器與設備 30
3.1.1 硬體設備 30
3.1.2 軟體設備 32
3.2 數位影像相關法環境參數設定 33
3.2.1 比例因子 33
3.2.2 影像重建誤差 33
3.2.3 數位影像相關法的解析度和精密度 33
3.2.4 分析結果的正確性 34
3.3 實驗儀器之架設 34
3.3.1 加熱平台之架設 34
3.3.2 封閉空間環境設計 35
3.4 消除加熱平台剛體位移量測 35
3.5 補償試片與風扇系統 36
3.6 實驗步驟 37
3.6.1 鈀金屬試片準備 37
3.6.2 鈀金屬表面影像擷取與分析 38
第四章 結果與討論 55
4.1 二維平面剛體位移驗證 55
4.2 鋁金屬熱膨脹係數驗證 56
4.3 鈀金屬熱膨脹係數量測結果 57
第五章 結論與未來展望 71
5.1結論 71
5.2 未來展望 72
參考文獻 73
附錄一 82
附錄二 83
附錄三 84
附錄四 85
附錄五 86
參考文獻 References
[1] 胡錦標、林宸生、林憲陽、楊宗興、蔡奇能、謝宏榮,精密光電技術,高立圖書有限公司,台北,台灣,1992。
[2] Y. Wang and W. Tong, “A high resolution DIC technique for measuring small thermal expansion of film specimens,” Optics and Lasers in Engineering, vol. 51, pp. 30-33, 2013.
[3] F. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron,” Physical Review, vol. 60, p. 597, 1941.
[4] L. Parrini, “Ultrasonic technologies enable ultra-fine-pitch, low-temperature bonding,” Solid State Technology, vol. 44, pp. 97-104, 2001.
[5] Z. Zhong and K. S. Goh, “Finite element analysis and experiments of ultrafine-pitch wire bonding,” in International Symposium on Microelectronics and Assembly, 2000, pp. 28-35.
[6] B. Zhang, K. Qian, T. Wang, Y. Cong, M. Zhao, X. Fan, et al., “Behaviors of palladium in palladium coated copper wire bonding process,” in Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP'09. International Conference on, 2009, pp. 662-665.
[7] S. Kaimori, T. Nonaka, and A. Mizoguchi, “The development of Cu bonding wire with oxidation-resistant metal coating,” Advanced Packaging, IEEE Transactions on, vol. 29, pp. 227-231, 2006.
[8] W. Peters and W. Ranson, “Digital imaging techniques in experimental stress analysis,” Optical Engineering, vol. 21, pp. 427-432, 1982.
[9] M. Sutton, W. Wolters, W. Peters, W. Ranson, and S. McNeill, “Determination of displacements using an improved digital correlation method,” Image and vision computing, vol. 1, pp. 133-139, 1983.
[10] M. A. Sutton, S. R. McNeill, J. Jang, and M. Babai, “Effects of subpixel image restoration on digital correlation error estimates,” Optical Engineering, vol. 27, pp. 870-877, 1988.
[11] M. Sutton, C. Mingqi, W. Peters, Y. Chao, and S. McNeill, “Application of an optimized digital correlation method to planar deformation analysis,” Image and Vision Computing, vol. 4, pp. 143-150, 1986.
[12] H. Bruck, S. McNeill, M. A. Sutton, and W. Peters Iii, “Digital image correlation using Newton-Raphson method of partial differential correction,” Experimental Mechanics, vol. 29, pp. 261-267, 1989.
[13] D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. Van Hemelrijck, et al., “Quality assessment of speckle patterns for digital image correlation,” Optics and lasers in Engineering, vol. 44, pp. 1132-1145, 2006.
[14] S. Yaofeng and J. H. Pang, “Study of optimal subset size in digital image correlation of speckle pattern images,” Optics and lasers in engineering, vol. 45, pp. 967-974, 2007.
[15] J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Optics and Laser Technology, vol. 35, pp. 533-542, 2003.
[16] A. Reynolds and F. Duvall, “Digital image correlation for determination of weld and base metal constitutive behavior,” WELDING JOURNAL-NEW YORK-, vol. 78, pp. 355-s, 1999.
[17] B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Némoz-Gaillard, “Kinematic manifestations of localisation phenomena in steels by digital image correlation,” European Journal of Mechanics-A/Solids, vol. 20, pp. 189-211, 2001.
[18] L. Chevalier, S. Calloch, F. Hild, and Y. Marco, “Digital image correlation used to analyze the multiaxial behavior of rubber-like materials,” European Journal of Mechanics-A/Solids, vol. 20, pp. 169-187, 2001.
[19] I. Chasiotis and W. G. Knauss, “A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy,” Experimental Mechanics, vol. 42, pp. 51-57, 2002.
[20] E. Li, A. Tieu, and W. Yuen, “Application of digital image correlation technique to dynamic measurement of the velocity field in the deformation zone in cold rolling,” Optics and Lasers in Engineering, vol. 39, pp. 479-488, 2003.
[21] J. N. Périé, H. Leclerc, S. Roux, and F. Hild, “Digital image correlation and biaxial test on composite material for anisotropic damage law identification,” International journal of solids and structures, vol. 46, pp. 2388-2396, 2009.
[22] M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mechanical Systems and Signal Processing, vol. 25, pp. 917-927, 2011.
[23] D. Nowell, M. Kartal, and P. De Matos, “Digital image correlation measurement of near‐tip fatigue crack displacement fields: constant amplitude loading and load history effects,” Fatigue & Fracture of Engineering Materials and Structures, vol. 36, pp. 3-13, 2013.
[24] E. Fagerholt, T. Børvik, and O. Hopperstad, “Measuring discontinuous displacement fields in cracked specimens using digital image correlation with mesh adaptation and crack-path optimization,” Optics and Lasers in Engineering, vol. 51, pp. 299-310, 2013.
[25] M. Krottenthaler, C. Schmid, J. Schaufler, K. Durst, and M. Göken, “A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation,” Surface and Coatings Technology, vol. 215, pp. 247-252, 2013.
[26] M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, ed: Springer, 2000, pp. 323-372.
[27] P. Bing, X. Hui-Min, X. Bo-Qin, and D. Fu-Long, “Performance of sub-pixel registration algorithms in digital image correlation,” Measurement Science and Technology, vol. 17, pp. 1615-1621, 2006.
[28] B. Pan, H. Xie, Z. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Optical Engineering, vol. 46, pp. 033601-033601-10, 2007.
[29] B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Optics express, vol. 16, pp. 7037-7048, 2008.
[30] P. Bing, X. Hui-min, H. Tao, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polymer Testing, vol. 28, pp. 75-83, 2009.
[31] B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200 C,” Measurement science and technology, vol. 22, p. 015701, 2011.
[32] M. De Strycker, L. Schueremans, W. Van Paepegem, and D. Debruyne, “Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques,” Optics and Lasers in Engineering, vol. 48, pp. 978-986, 2010.
[33] J. Y. Lin, F. I. Su, C. H. Chien, T. H. Su, W. T. Lin, Y. D. Jhuang, et al., “Thickness Effects on the Thermal Expansion Coefficient of ITO/PET Film,” in Imaging Methods for Novel Materials and Challenging Applications, Volume 3, ed: Springer, 2013, pp. 353-358.
[34] T. Jin, N. Ha, and N. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, vol. 77, pp. 187-197, 2014.
[35] R. B. Berke and J. Lambros, “Ultraviolet digital image correlation (UV-DIC) for high temperature applications,” Review of Scientific Instruments, vol. 85, p. 045121, 2014.
[36] T. Finke and T. Heberling, “Determination of thermal-expansion characteristics of metals using strain gages,” Experimental Mechanics, vol. 18, pp. 155-158, 1978.
[37] D. Deng and L. Xu, “Measurements of thermal expansion coefficient of phenolic foam at low temperatures,” Cryogenics, vol. 43, pp. 465-468, 2003.
[38] Y. W. Wang and W. C. Chen, “New photosensitive colorless polyimide-silica hybrid optical materials: synthesis, properties and patterning,” Materials Chemistry and Physics, vol. 126, pp. 24-30, 2011.
[39] M. Hasegawa, Y. Sakamoto, Y. Tanaka, and Y. Kobayashi, “Poly (ester imide) s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis (4-aminophenyl) terephthalate and effect of substituents,” European Polymer Journal, vol. 46, pp. 1510-1524, 2010.
[40] R. Praveen, S. Jacob, C. Murthy, P. Balachandran, and Y. Rao, “Hybridization of carbon–glass epoxy composites: An approach to achieve low coefficient of thermal expansion at cryogenic temperatures,” Cryogenics, vol. 51, pp. 95-104, 2011.
[41] W. Ma, S. Gong, H. Xu, and X. Cao, “On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions,” Scripta materialia, vol. 54, pp. 1505-1508, 2006.
[42] G. Li, W. Wang, X. Bian, J. Zhang, R. Li, and J. Qin, “Correlation between thermal expansion coefficient and glass formability in amorphous alloys,” Materials Chemistry and Physics, vol. 116, pp. 72-75, 2009.
[43] J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Applied optics, vol. 30, pp. 3656-3660, 1991.
[44] R. Brückner, “Properties and structure of vitreous silica. I,” Journal of non-crystalline Solids, vol. 5, pp. 123-175, 1970.
[45] A. Winter and M. Cabannes, “On the structure of vitreous silica,” CR Acad. Sci. Paris, vol. 240, pp. 2397-1400, 1955.
[46] T. Izumitani, T. Yamashita, M. Tokida, K. Miura, and H. Tajima, “New Fluoroaluminate Glasses and Their Crystallization Tendencies and Physical-Chemical Properties,” in Materials Science Forum, 1987, pp. 19-26.
[47] R. Waxler and G. Cleek, “Effect of temperature and pressure on refractive-index of some oxide glasses,” Journal of Research of The National Bureau of Standards Section A-Physics and Chemistry, pp. 755-763, 1973.
[48] L. Singh, P. J. Ludovice, and C. L. Henderson, “Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films,” Thin Solid Films, vol. 449, pp. 231-241, 2004.
[49] C. G. Campbell and B. D. Vogt, “Examination of the influence of cooperative segmental dynamics on the glass transition and coefficient of thermal expansion in thin films probed using poly (N-alkyl methacrylate)s,” Polymer, vol. 48, pp. 7169-7175, 2007.
[50] S. Wiechmann and J. Müller, “Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon,” Thin Solid Films, vol. 517, pp. 6847-6849, 2009.
[51] W. Fang, H. C. Tsai, and C. Y. Lo, “Determining thermal expansion coefficients of thin films using micromachined cantilevers,” Sensors and Actuators A: Physical, vol. 77, pp. 21-27, 1999.
[52] W. Fang and C. Y. Lo, “On the thermal expansion coefficients of thin films,” Sensors and Actuators A: Physical, vol. 84, pp. 310-314, 2000.
[53] Y. Zoo, D. Adams, J. Mayer, and T. Alford, “Investigation of coefficient of thermal expansion of silver thin film on different substrates using x-ray diffraction,” Thin Solid Films, vol. 513, pp. 170-174, 2006.
[54] N. Waterhouse and B. Yates, “The interferometric measurement of the thermal expansion of silver and palladium at low temperatures,” Cryogenics, vol. 8, pp. 267-271, 1968.
[55] G. White and A. Pawlowicz, “Thermal expansion of rhodium, iridium, and palladium at low temperatures,” Journal of Low Temperature Physics, vol. 2, pp. 631-639, 1970.
[56] J. Arblaster, “The thermodynamic properties of palladium on ITS-90,” Calphad, vol. 19, pp. 327-337, 1995.
[57] C. A. Mackliet and A. Schindler, “Low-Temperature Specific Heat of Palladium Containing Interstitial Hydrogen,” Physical Review, vol. 146, p. 463, 1966.
[58] B. W. Veal and J. A. Rayne, “Heat Capacity of Palladium and Dilute Palladium: Iron Alloys from 1.4 to 100° K,” Physical Review, vol. 135, p. A442, 1964.
[59] T. Smith, W. Gardner, and H. Montgomery, “A study of spin-wave excitations in dilute Pd-Fe alloys,” Journal of Physics C: Solid State Physics, vol. 3, p. S370, 1970.
[60] B. Boerstoel, J. Zwart, and J. Hansen, “The specific heat of palladium, platinum, gold and copper below 30 K,” Physica, vol. 54, pp. 442-458, 1971.
[61] J. W. Arblaster, “Crystallographic Properties of Palladium,” Platinum Metals Review, vol. 56, pp. 181-189, 2012.
[62] T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Experimental mechanics, vol. 25, pp. 232-244, 1985.
[63] R. Keys, “Cubic convolution interpolation for digital image processing,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 29, pp. 1153-1160, 1981.
[64] 吳家勝,數位影像相關法於三維變形量測之新應用,碩士論文,國立中山大學機械與機電工程學系,高雄,台灣,2009。
[65] B. Pan, D. Wu, and Y. Xia, “High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation,” Optics and Lasers in Engineering, vol. 48, pp. 841-848, 2010.
[66] 陳太平、蘇廷軒、林偉邦、蔡智霖,電子斑點干涉術於不穩定環境中影響之探討,八十三週年校慶基礎學術研討會,陸軍軍官學校,高雄,台灣,ME-131~139頁,2007。
[67] R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” JOSA B, vol. 4, pp. 875-881, 1987.
[68] F. Nix and D. MacNair, “The thermal expansion of pure metals. II: molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead,” Physical Review, vol. 61, p. 74, 1942.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code