Responsive image
博碩士論文 etd-0731114-235106 詳細資訊
Title page for etd-0731114-235106
論文名稱
Title
以拉格朗日連結結構研究動態失速
Lagrangian-Based Investigation for Dynamic Stall
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-14
繳交日期
Date of Submission
2014-09-03
關鍵字
Keywords
拉格朗日連結結構、數值模擬、擺動翼片、紊流模型、動態失速
Dynamic stall, Numerical simulation, Lagrangian Coherent Structures, Turbulence model, Pitching airfoil
統計
Statistics
本論文已被瀏覽 5678 次,被下載 576
The thesis/dissertation has been browsed 5678 times, has been downloaded 576 times.
中文摘要
本研究最主要的目的在於模擬機翼處於動態失速的狀況下,攻角對於升力的影響,並比較了動態失速與靜態失速的不同。在進行分析時,運用兩種不同的觀察法(傳統尤拉法及拉格朗日連結結構),並從這兩者間找出關聯性,進一步的分析出機翼處於動態失速下的流場。除了觀察壓力場、速度場及渦度等這些在傳統尤拉方法觀測到的數據,並加上質點追蹤及Lagrangian Coherent Structures (LCS)。
從模擬結果可以得知在動態失速下,影響升力最主要的因素為渦旋的強度、所處的位置及不同攻角造成下表面的高壓區強度、面積大小有關。上表面的順時針渦旋通常都是會使升力上升,但須考慮到強度及位置是否接近機翼上表面。尾端逆時針渦旋如果強度夠且成長至機翼尾端上表面附近,則它產生的低壓區能使升力上升,但尾端渦旋離機翼尾端太近則會使機翼下表面尾端流體加速,使機翼下表面壓力降低,這會使升力下降。
Abstract
The phenomenon of dynamic stall for a single pitching foil is simulated and analyzed in this study. The differences between static and dynamic stall are investigated in terms of lift coefficient. In addition to the traditional Eulerian viewpoint, Lagranigan coherent structures are also utilized to gain more insights of the flow physics.
The result of simulation can capture the dynamic flows effectively on qualitative. It is shown that the strength and location of vorticity will affect the lift, and so does the interactions between high and low pressure area, which are dominated by angle of attack. The leading-edge vortex usually will enhance the lift. As for the trailing-edge vortex, it will reduce the lift. On the other hand, the lift will increase if this vortex is closer to the upper surface.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 viii
符號說明 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 動態失速 1
1.2.2 拉格朗日連結結構 3
1.3 研究目的 5
第二章 研究方法 6
2.1 模擬擺動翼片之數值方法與流程 6
2.1.1 紊流之模擬方法 6
2.1.2 動網格之使用 11
2.1.3 流場幾何、邊界條件及網格設定 12
2.1.4 實驗與模擬驗證 15
2.2 拉格朗日連結結構研究方法 18
第三章 結果與討論 20
3.1 動態失速分析 20
3.1.1 靜態與動態機翼比較 21
3.1.2 延遲失速分析 23
3.1.3 機翼失速分析 33
3.1.4 失速後流場分析 44
3.2 三次升力震盪的比較及分析 48
第四章 結論與建議 51
參考文獻 53
參考文獻 References
[1]C. H. Hsieh, “Experimental and numerical studies of torque and power generation in a vertical axis wind turbine,” National Cheng Kung University (2009).
[2]http://en.wikipedia.org/wiki/Wind_turbine (2013).
[3]L. W. Carr, “Progress in analysis and prediction of dynamic stall,” J. Aircraft. 25(1), 1-25 (1988).
[4]http://mae.osu.edu/labs/afcad/research/dynamic-stall (2013).
[5]S. Y. Wang, D. B. Ingham, L. Ma, M. Pourkashanian, and Z. Tao, “Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils,” Computers & Fluids. 39(9), 1529-1541 (2010).
[6]F. D. Harris and R. R. Pruyn, “Blade stall-half fact, half fiction,” Journal of the American Helicopter Society. 13(2), 27-48 (1968).
[7]N. D. Ham and M. S. Garelick, “Dynamic stall considerations in helicopter rotors,” Journal of the American Helicopter Society. 13(20), 49-55 (1968).
[8]N. D. Ham, “Aerodynamic loading on a two-dimensional airfoil during dynamic stall,” AIAA Journal. 6(10), 1927-1934 (1968).
[9]M. Raffel, J. Kompenhans, and P. Wernert, “Investigation of the unsteady flow velocity field above an airfoil pitching under deep dynamic stall conditions,” Experiment in Fluids. 19(2), 103-111 (1995).
[10]P. Wernert, G. Koerber, F. Wietrich, M. Raffel, and J. Kompenhans, “Demonstration by PIV of the nonreproducibility of the flow field around an airfoil pitching under deep dynamic stall conditions and consequences thereof,” Aerospace Science and Technology. 2, 125-135 (1997).
[11]H. Oshima and B. R. Ramaprian, “Velocity measurements over a pitching airfoil,” AIAA Journal. 35(1),119-126 (1997).
[12]J. Leishman, “Dynamic stall experiments on the NACA 23012 aerofoil,” Experiment in Fluids. 9(1), 49-58 (1990).
[13]Ko-Foa Tchon and I. Paraschivoiu, “Navier-stokes simulation of the flow around an airfoil in darrieus motion,” Journal of Fluids Engineering. 116(4), 870-876 (1994).
[14]R. E. Sheldahl, “Comparison of field and wind-tunnel darrieus wind-turbine data,” Journal of Energy. 5(4), 254-256 (1981).
[15]N. Fujisawa and M. Takeuchi, “Flow visualization and PIV measurements of flow field around a darrieus rotor in Dynamic Stall,” Journal of Visualization. 1(4), 379-386 (1999).
[16]M. D. Islam, S. K. Ting, and A. Fartaj, “Aerodynamic models for darrieus-type straight-bladed vertical axis wind turbines,” Renewable & Sustainable Energy Reviews. 12(4), 1087-1109 (2008).
[17]J. M. Yu, T. S. Leu, C. C. Hu, T. L. Chen, J. J. Miau, S. Y. Liang, J. Y. Li, J. C. Cheng, and S. J. Chen, “Investigation of turbulence and reduced frequency effects on dynamic stall phenomena over a pitching airfoil,”
[18]T. S. Leu, J. M. Yu, C. C. Hu, J. J. Miau, S. T. Liang, J. Y. Li, J. C. Cheng, and S. J. Chen, “Experimental study of free stream turbulence effects on dynamic stall of pitching airfoil by using particle image velocimetry,” Applied Mechanics and Materials. 225, 103-108 (2012).
[19]P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence,Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, UK, 1996).
[20]J. Helman and L. Hesselink, “Representation and display of vector field topology in fluid flow data sets,” IEEE Computer. 22(8), 27-36 (1989).
[21]G. Haller, “Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence,” Physics of Fluids. 13(11), 3365-3395 (2001).
[22]J. L. Lumley, “The structure of inhomogeneous turbulent flows,” Atmospheric Turbulence and Radio Wave Propagation. 166-178 (1967).
[23]J. L. Lumley, “Coherent structures in turbulence,” In: Transition and turbulence. Academic Press. 215-241 (1981).
[24]G. Berkooz, P. Homes, and J. L. Lumley, “The proper orthogonal decomposition in the analysis of turbulent flows,” Annual Review of Fluid Mechanics. 25, 539-575 (1993).
[25]G. Kerschen, J.-C. Golinval, A. F. Vakakis, and L. A. Bergman, “The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview,” Nonlinear Dynamics. 41, 147-169 (2005).
[26]J. L. Helman and L. Hesselink, “Surface representations of two- and three-dimensional fluid flow topology,” 1st conference on Visualization, San Francisco, CA, Oct 23-26, 1990.
[27]F. Sadlo and R. Peikert, “Comparison to vector field topology,” Topology-Based Methods in Visualization (2007).
[28]G. Haller and G. Yuan, “Lagrangian coherent structures and mixing in two-dimensional turbulence,” Physica D. 147, 352-370 (2000).
[29]S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows,” Physica D. 212, 271-304 (2005).
[30]M. M. Wilson, J. Peng, J. O. Dabiri and J. D. Eldredge, “Lagrangian coherent structures in low reynolds number swimming,” Journal of Physics: Condensed Matter. 21(20), 204105 (2009).
[31]J. Peng and J. O. Dabiri, “A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity: application to animal swimming measurements,” Experiments in Fluids. 43(5), 655-664 (2007).
[32]J. O. Dabiri, S. P. Colin, J. H. Costello, and M. Gharib, “Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses,” Journal of Experimental Biology. 208(7), 1257-1265 (2005).
[33]M. J. Olascoaga and G. Hallerb, “Forecasting sudden changes in environmental pollution patterns,” Proceedings of the National Academy of Sciences. 109(13), 4738-4743 (2012).
[34]F. Lekien and N. Leonard, “Dynamically consistent lagrangian coherent structures,” 8th Experimental Chaos Conference, AIP conference proceeding. 742, 132-139 (2004).
[35]S. C. Shadden, J. O. Dabiri, and J. E. Marsden, “Lagrangian analysis of fluid transport in empirical vortex ring flows,” Physics of Fluids. 18(4), 047105 (2006).
[36]E. Franco, D. N. Pekarek, J. Peng, and J. O. Dabiri, “Geometry of unsteady fluid transport during fluid–structure interactions,” Journal of Fluid Mechanics. 589, 125-145 (2007).
[37]M. A. Green, C. W. Rowley, and G. Haller, “Detection of lagrangian coherent structures in three-dimensional turbulence,” Journal of Fluid Mechanics. 572, 111-120 (2007).
[38]G. Elert, The Chaos Hypertextbook. http://hypertextbook.com/chaos/ (2007).
[39]G. Haller, “An objective definition of a vortex,” J. Fluid Mech. 525, 1-26 (2005).
[40]D. M. Sharma, and K. Poddar, “Investigation of dynamic stall characteristics for flow past an oscillating airfoil at various reduced frequencies by simultaneous PIV and surface pressure measurements,” 10th International Symposium On Particle Image Velocimetry, Delft, The Netherlands, July 1-3, 2013.
[41]W. J. McCroskey, L. W. Carr, K. W. McAlister, “Dynamic stall experiments on oscillating airfoils,” AIAA Journal. 14(1), 57-63 (1976).
[42]W. J. McCroskey, “The 1976 freeman scholar lecture: some current research in unsteady fluid dynamics,” Journal of Fluids Engineering. 99(1), 8-39 (1977).
[43]S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” International Journal of Heat and Mass Transfer. 15(10), 1787-1806(1972).
[44]ANSYS FLUENT Theory Guide. Release 14.0 (2011).
[45]D. C. Wilcox, Turbulence modeling for CFD (DCW Industries, La Canada, CA, 1998).
[46]W. Shyy, S. S. Thakur, H. Ouyang, J. Liu, and E. Blosch, Computational Techniques for Complex Transport Phenomena (Cambridge University Press, New York, 2005).
[47]W. J. A. Dahm, “Introduction to Turbulent Flows, Physical Concept, Statistical Theory, and Engineering Modeling,” University of Michigan (2007).
[48]B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flow,” Computer Methods in Applied Mechanics and Engineering. 3, 269-289 (1974).
[49]A. Ruprecht, T. Helmrich, and I. Buntic, “Very large eddy simulation for the prediction of unsteady vortex motion,” Conference on Modeling Fluid Flow (CMFF’05), The 12th International Conference on Fluid Flow Technologies. Budapest, Hungary, Sept 3-6, 2005.
[50]M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids A. 3(7), 1760-1765 (1991).
[51]J. Smagorinsky, “General Circulation Experiments with the Primitive Equations,” Monthly Weather Review. 91(3), 99-164 (1963).
[52]J. Y. Wu, G. Y. Wang, and W. Shyy, “Time-dependent turbulent cavutating flow computations with interfacial transport and filter-based models,” International Journal for Numerical Methods in Fluids. 49(7), 739-761 (2005).
[53]Y. Wei, C. C. Tseng, and G. Wang, “Turbulence and cavitation models for time-dependent turbulent cavitating flows,” Acta Mechanica Sinica. 27(4), 473-487 (2011).
[54]C. C. Tseng and W. Shyy, “Modeling for isothermal and cryogenic cavitation,” International Journal of Heat and Mass Transfer. 53(1-3), 513-525 (2010).
[55]C. C. Tseng, Y. Wei, G. Wang, and W. Shyy, “Review: Modeling of Turbulent, Isothermal and Cryogenic Cavitation Under Attached Conditions,” Acta Mecanica Sinica. 26(3), 325-353 (2010).
[56]M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A.K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capability,” International Journal of Heat and Fluid Flow. 29(6), 1638-1649 (2008).
[57]N. Chauvet, S. Deck, and L. Jacquin, “Zonal detached eddy simulation of a controlled propulsive jet,” AIAA Journal. 45(10), 2458-2473 (2007).
[58]M. Strelets, Detached Eddy Simulation of Massively Separated Flows (American Institute of Aeronautics & Astronautics 2001-0879, 2001).
[59]S. T. Johansen, J. Y. Wu, and W. Shyy, “Filter based unsteady RANS computational,” International Journal of Heat and Fluid Flow 25(1), 10-21 (2005).
[60]G. Martinat, M. Brazal, Y. Hoarau and G. Harran, “Turbulence modelling of the flow past a pitching NACA0012 airfoil at 105 and 106 reynolds numbers,” Journal of Fluids and Structure. 24, 1293-1303 (2008).
[61]F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal. 32(8), 1598-1605 (1994).
[62]T. Lee and P. Gerontakos, “Investigation of flow over an oscillating airfoil,” Journal of Fluid Mechanics. 512, 313-341 (2004).
[63]A. Zanotti and G. Gibertini, “Experimental investigation of the dynamic stall phenomenon on a NACA 23012 oscillating airfoil,” Journal of Aerospace Engineering. 227(9), 1375-1388(2013).
[64]A. D. Gardner, K. Richter, H. Mai, A. R. M. Altmikus, A. Klein, C.-H. Rohardt, “Experimental investigation of dynamic stall performance for the EDI-M109 and EDI-M112 airfoils,” Journal of the American Helicopter Society. 58 (1), 1-13(2013).
[65]M. Sohail and R. Ullah, “CFD of oscillating airfoil pitch cycle by using PISO algorithm,” World Academy of Science, Engineering and Technology. 5(12), 1355-1359 (2011).
[66]K. A. Ahmad, M. Z. Abdullah and J. K. Watterson, “Numerical modelling of a pitching airfoil,” Jurnal Mekanikal. 30, 37-47 (2010).
[67]http://en.wikipedia.org/wiki/Inverse_distance_weighting (2013).
[68]P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers(Oxford University Press, New York, 2004).
[69]H. A. Hu and C. C. Tseng, “Numerical Simulation of Dynamic Stall on a Pitching Airfoil,” National Sun Yat-sen University(2013).
[70]J. Katz, Race-car aerodynamics (Robert Bentley Inc, Cambridge, MA, 1995).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code