Responsive image
博碩士論文 etd-0731115-001955 詳細資訊
Title page for etd-0731115-001955
論文名稱
Title
以金屬網格之電極結構應用於互補式電致色變元件
Complementary electrochromic device using metal grid electrode structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-09-07
關鍵字
Keywords
著色效率、光學穿透率、電子束蒸鍍法、互補式電致色變元件、金屬網格
Transmittance, Coloration efficiency, Metal grid, E-beam evaporation, Complementary electrochromic device
統計
Statistics
本論文已被瀏覽 5653 次,被下載 30
The thesis/dissertation has been browsed 5653 times, has been downloaded 30 times.
中文摘要
本研究先將銅、鎳-釩與鎢金屬使用脈衝直流濺鍍法沈積於ITO玻璃基板,並以自製遮罩製備具金屬網格結構之電極,分別將NiO與WO3電致色變薄膜以電子束蒸鍍法沈積於電極上,再以膠態電解質製備完成互補式電致色變元件(CECD)。依序探討金屬電極結構之環境高溫穩定性、電化學循環穩定性及電場模擬均勻性,並探討有、無金屬網格電極於元件之特性影響。
研究結果,首先針對金屬電極特性分析,以Metal/ITO/Glass之結構於溫度由室溫上升至100 ℃時,W、NiV及Cu金屬之片電阻上升幅度皆小於5 %;在電化學穩定性之研究中,將金屬電極直接製作成互補式結構之元件,並以± 1.8 V循環切換50次下,其中Cu與NiV金屬之元件消耗電荷量約衰減14 %,而W金屬之衰減量最低約8 %,由以上結果得知,W金屬之電化學穩定性較佳;於電場模擬方面,金屬網格能使電場均勻性得到提升,且Cu金屬的良好導電性使得電場強度分布較W金屬來得均勻。
互補式電致色變元件的製作與分析方面,於驅動電壓1.8 V下CECD具有最佳之電致色變特性,且在著色時間為60 s時,於波長550 nm之著色光學穿透率為36.17 %,光學穿透率差ΔT%為36.16 %及著色效率η值為77.92 cm2/C;鎢金屬網格之CECD(W-CECD)於著色時間為60 s時有較佳元件特性,於波長550 nm之著色光學穿透率為32.46 %,光學穿透率差ΔT%為39.08 %及著色效率η值為81.93 cm2/C;銅金屬網格之CECD(Cu-CECD)在著色時間為30 s時特性較佳,於波長550 nm之著色光學穿透率為36.73 %,光學穿透率差ΔT%為36.67 %及元件著色效率為29.62 cm2/C。
響應時間與記憶效應方面,CECD之著褪色總響應時間約為94 s,且當著色完成並將電壓移除經過24小時後,著色光學穿透率為36.35 %,表現出良好之記憶效應;而W-CECD的總響應時間約為98 s,且經過放置24小時後,其著色光學穿透率為33.31 %。結果顯示在金屬網格加入之後仍有不錯的記憶效應,但在響應時間上沒有得到改善。
Abstract
In this study, the electrodes for the complementary electrochromic device (CECD) were fabricated using cooper, nickel-vanadium and tungsten by pulsed-DC sputtering deposite on and formed the metal grid structure by self-made mask. Then, the electrochromic films of NiO and WO3 were respectively deposited on these electrodes by e-beam evaporation. Finally, these electrodes were applied to CECDs with gel polymer electrolyte. This study sequentially investigated the stability of high-temperature environment and electrochemical circulation, uniformity of the simulated electric field and the effect on the device characteristics with or without metal grid structure.
The first part of the experimental results is the characteristics of the metal electrode. When the environment temperature rising to 100 ℃, the sheet resistances of the W, Ni-V and Cu were rised less than 5 %. For the stability of the electrochemical part, the CECD was fabricated with metal electrodes and switched 50 times with ± 1.8 V. The results reveal that the attenuation of the consumed charge of devices with Cu and Ni-V is 14 % and W is the lowest with 8 %. Consequently, the metal W exists the highest electrochemical stability. For the uniformity of the simulated electric field part, the uniformity of the electric field was enhanced by using metal grid structure and the more uniform electric field received by using Cu grid due to its excellent conductivity.
For the fabrication and the analysis of CECD, the CECD exhibited better electrochromic characteristics when the applied voltage is 1.8 V. When the applied time of CECD is 60 s, the experiment results (λ@550 nm) show that the transmittance of colored state is 36.17 %, transmittance change (ΔT%) is 36.16 % and the coloration efficiency (η) is 77.92 cm2/C. The CECD using W grid electrode structure (W-CECD) exhibited better electrochromic characteristics when the applied time is 60 s. The experiment results (λ@550 nm) show that the transmittance of colored state is 32.46 %, ΔT% is 39.08 % and η is 81.93 cm2/C. The CECD using Cu grid electrode structure (Cu-CECD) exhibited better electrochromic characteristics when the applied time is 30 s. The experiment results (λ@550 nm) show that the transmittance of colored state is 36.73 %, ΔT% is 36.67 % and η is 29.62 cm2/C.
For the response time and the memory effect, the response time of the CECD was found to be about 94 s and the transmittance of colored state increased to 36.35 % after 24 h without biased voltage supply. The response time of the W-CECD was found to be about 98 s and the transmittance of colored state increased to 33.31 % after 24 h without biased voltage supply. The results show that the memory effect was still excellent after using metal grid electrode structure.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
總目錄 vii
圖目錄 xi
表目錄 xv
附錄索引 xvi
第一章 前言 1
1-1 概述 1
1-2 文獻回顧 3
1-3 研究動機 6
第二章 理論 10
2-1 變色材料簡介 10
2-2 電致色變材料與沈積方式 12
2-3 電致色變元件結構 16
2-3-1 互補式電致色變元件 17
2-3-2 電致色變元件基板 17
2-3-3 工作電極層 19
2-3-4 輔助電極層 22
2-3-5 離子傳導層(電解質層) 25
2-4 電致色變機制 26
2-5 電場 27
2-5-1 電場的定義 27
2-5-2 電化學的電場 28
2-6 鍍膜技術 29
2-6-1 薄膜沈積 30
2-6-2 蒸鍍法 31
2-6-3 電子束的產生 32
2-7 光學性質 34
2-7-1 著色效率 35
第三章 實驗 36
3-1 電極之製備 37
3-1-1 基板之準備 37
3-1-2 金屬網格之材料選用與沈積方法 37
3-1-3 NiO與WO3材料選用與沈積方法 38
3-1-4 NiO與WO3薄膜製備流程 39
3-1-5 電致色變薄膜製程參數 42
3-2 離子傳導層(電解質層)之製備 43
3-3 金屬電極之電場分布模擬 44
3-3-1 Ansoft Maxwell 2D/3D模擬軟體介紹 44
3-3-2 電場模擬流程 45
3-3-3 電場模擬方式 46
3-4 薄膜物性分析 46
3-4-1 場放射型掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM)分析 46
3-4-2 X光繞射(X-ray diffraction, XRD)分析 47
3-5 薄膜電性分析 48
3-5-1 四點探針量測 48
3-5-2 循環伏安(Cyclic voltammogram, CV)分析 48
3-5-3 階梯電位測試 49
3-6 光學特性分析 50
3-6-1 紫外-可見-紅外光譜儀(Ultraviolet-visible-infrared spectrometer, UV-Vis-NIR)分析 50
3-6-2 著色效率(Coloration efficiency, η)分析 50
3-6-3 響應時間(Response time) 51
3-6-4 記憶效應(Memory effect)分析 51
第四章 結果與討論 52
4-1 不同金屬薄膜特性分析 52
4-1-1 環境溫度對金屬薄膜片電阻的影響 52
4-1-2 電化學穩定性測試 53
4-2 模擬電極之電場分布 56
4-2-1 鎢金屬網格沈積於ITO玻璃之電場強度分布 57
4-2-2 銅金屬網格沈積於ITO玻璃之電場強度分布 59
4-3 不同驅動電壓對CECD元件之影響 60
4-3-1 XRD晶向分析 61
4-3-2 SEM剖面及表面特性分析 61
4-3-3 T%、ΔT%與ΔOD分析 62
4-3-4 Q與η分析 64
4-4 金屬網格對CECD元件之影響 66
4-4-1 金屬網格加入CECD之電性及光學分析 66
4-4-2 金屬網格加入後之元件特性分析 74
第五章 結論 78
參考文獻 81
附錄 87
參考文獻 References
[1] “International Energy Outlook 2010”,Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585.
[2] 陳林析,“智慧型窗戶-電致色變技術與節能建築科技應用”工業技術研究院,民國九十七年。
[3] 黃呈加,“台灣電力公司節約能源論文發表會”,2001,p.135-144。
[4] J. R. Platt, J. Chem. Phys. 34 (1961) 862.
[5] J. S. E. M. Svensson and C. G. Granqvist, Proc. S.P.I.E. 502 (1984) 30.
[6] H. Tada, Y. Bito, K. Fujino and H. Kawahara, Sol. Energy Mater. Sol. Cells 16 (1987) 509.
[7] P. Schlotter, G. Baur, R. Schmidt and U. Weinberg, “Laminated electrochromic device for smart windows”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2255 (1994) 351-362.
[8] J. Chen, Z. Zhu, Y. Zhou, R. Wang and Y. Yan, “All solid state electrochromic device: WO3/LiAlF4:Li/VO2”, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 2531 (1995) 161-165.
[9] J. G. H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O’Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne and B. P. Hichwa, “Large area electrochromics for architectural applications”, Journal of Non-Crystalline Solids, 218 (1997) 342-346.
[10] H. Inaba, M. Iwaku, K. Nakase, H. Yasukawa, I. Seo and N. Oyama, Electrochimical Acta, 40 (1995) 227-232.
[11] J. Nagai, G. D. McMeeking, Y. Saitoh, “Durability of electrochromic glazing”, Solar Energy Materials and Solar Cells, 56 (1999) 309-319.
[12] Z. Xuping, Z. Haokang, L. Qing and L. hongli, IEEE Electron Device Lett. 21 (2000) 5.
[13] 楊慧敏,“氧化鎢與氧化釩單層膜與多層膜之製備與特性分析及其電致色變性質”,國立東華大學材料科學與工程研究所碩士論文,(2002)。
[14] A. L. Larsson and G. A. Niklasson, Mater. Lett. 58 (2004) 2517.
[15] D. Mecerreyes, R. Marcilla, E. Ochoteco, H. Grande, J. A. Pomposo, R. Vergaz, J. M. S. Pena, Electrochimica Acta, 49 (2004) 3555–3559.
[16] Y. C. Nah, K. S. Ahn, K. Y. Cho, J. Y. Park, H. S. Shim, Y. M. Lee and Y. E. Sung, J. Electrochim. Soc. 152 (2005) 12.
[17] A. Subrahmanyam and A. Karuppasamy, Sol. Energy Mater. Sol. Cells 91 (2007) 266.
[18] 洪崇榮,“以射頻磁控濺鍍製備WO3-x/LiBO2:LiF/NiO多層膜之全固態互補式電致色變元件性質研究”,義守大學材料科學與工程研究所碩士論文,(2008)。
[19] C. O. Avellaneda, D. F. Vieira, A. A. Kahlout, S. Heusing, E. R. Leite, A. Pawlicka and M. A. Aegerter, Sol. Energy Mater. Sol. Cells 92 (2008) 228.
[20] A. Georg and A. Georg, Sol. Energy Mater. Sol, 93(2009)1329.
[21] T. Qio, B. Luo, M. Liang, J. Ning, B. Wang, X. Li and L. Zhi, Carbon 81 (2015)232~238.
[22] G. Brauer, Surf. Coat. Techol., 112 (1999) 358.
[23] C. G. Graqvist, Thin Solid Film, 193 (1990) 730.
[24] C. G. Graqvist, Appl. Phys., 52 (1991) 83.
[25] 彭秦濠,“以高分子膠態電解質應用於互補式電致色變元件之研究”,正修科技大學電機工程研究所碩士論文,2012。
[26] 施泰宇,“互補式電致色變元件之研究”,正修科技大學電機工程研究所碩士論文,(2009)。
[27] 施敏,“半導體元件物理與製作技術(第二版)”,國立交通大學出版社,p.428。
[28] Y. Zhang, J. Yuan, J. Le, L. Song and L. Hu, Sol. Energy Mater. Sol. Cells, 93 (2009) 1338.
[29] S. Y. Lin, C. M. Wang, K. S. Kao, Y. C. Chen and C. C. Liu, J. Sol-Gel Sci. Technol., 53 (2010) 51.
[30] S. Y. Lin, Y. C. Chen, C. M. Wang and C. C. Liu, J. Solid State Electrochem., 12 (2008) 1481.
[31] H. Wang, M. Yan and Z. Jiang, Thin Solid Films, 401 (2001) 211.
[32] C. G. Tsiafoulis, P. N. Trikalitis and M. I. Prodromidis, Electrochem. Commun. 7 (2005) 1398.
[33] P. S. Patil, R. K. Kawar, and S. B. Sadale, Electrochim. Acta, 50 (2005) 2527.
[34] R. Romero, E. A. Dalchiele, F. Martin, D. Leinen and J. R. Ramos-Barrado, Sol. Energy Mater. Sol. Cells, 93 (2009) 222.
[35] H. S. Shim, V. R. Shinde, H. J. Kim, Y. E. Sung and W. B. Kim, Thin Solid Films, 516 (2008) 8573.
[36] A. K. M. Kafi, F. Yin, H. K. Shin and Y. S. Kwon, Curr. Appl. Phys., 7 (2007) 496.
[37] R. J. Mortimer and T. S. Varley, Dyes Pigment. 89 (2011) 169.
[38] S. F. Hong and L. C. Chen, Electrochim. Acta, 53 (2008) 5306.
[39] T. Gallasch, T. Stockhoff, D. Baither and G. Schmitz, J. Power Sources, 196 (2011) 428.
[40] S. Pahal, M. Deepa, S. Bhandari, K. N. Sood and A. K. Srivastava, Sol. Energy Mater. Sol. Cells, 97 (2010) 1064.
[41] C. M. Wang, K. S. Kao, D. L. Cheng, C. C. Cheng, P. T. Hsieh, S. Y. Lin, T. Y. Shih and C. Y. Wen, Materials Science Forum, 1904 (2010) 654-656.
[42] F. B. Kaufman, E. M. Engler and A. H. Schroeder, Electron. Mater. Conf. Abstract B-1, (1979).
[43] R. V. Pole, G. T. Sincerbox and M. D. Shattuck, Appl. Phys. Lett., 28 (1976) 494.
[44] R. Montazami, V. Jain and J. R. Heflin, Electrochim. Acta, 56 (2010) 990.
[45] 林亦儒,“以濺鍍法製備氧化鎳薄膜之電致色變性能分析”,國立台灣師範大學機電科技研究所碩士論文,2006。
[46] 陳為峰,“以無電鍍法製備氧化鎳之電致色變材料”,逢甲大學化學工程研究所碩士論文,2001。
[47] S. Y. Lin, C. M. Wang, K. S. Kao, Y. C. Chen and C. C. Liu, J. Sol-Gel Sci. Technol. 53 (2010) 51.
[48] C. M. Wang, S. Y. Lin and Y. C. Chen, J. Chem. Phys. Sol. 69 (2008) 451.
[49] S. Y. Lin, Y. C. Chen, C. M. Wang, P. T. Hsieh, and S. H. Shih, Applide Surface Science. 255 (2009) 3868.
[50] C. G. Granqvist, E. Avendano and A. Azens, Thin Solid Films, 442 (2003) 201-211.
[51] 林亦儒,“以濺鍍法製備氧化鎳薄膜之電致色變性能分析”,國立台灣師範大學機電科技研究所碩士論文,(2006)。
[52] 陳柏菁,“應用於平面顯示器之ITO透明電極”,光訊,第85期,民國九十年,p.27。
[53] K. Bange, Sol. Energy Mater. Sol. Cells 58 (1999) 29.
[54] P. M. Woodward and A. W. Sleight, J. Sol. State Chem. 131 (1997) 9.
[55] N. Ohshima, M. Nakada and Y. Tsukamoto, Jpn. J. Appl. Phys. 35 (1996) L1585.
[56] O. Kohmoto, H. Nakagawa, F. Ono and A. Chayahara, J. Magn. Magn. Mater. 1627 (2001) 226.
[57] I. Hotovy and D. Buc, Vacuum 50 (1998) 41.
[58] H. L. Chen and Y. S. Yang, Thin Sol. Films 516 (2008) 5590.
[59] X. Chen, X. Hu and J. Feng, Nanostructured Materials 6 (1995) 309.
[60] S. A. Agnihotry, K. K. Saini Subhas Chandra, Indian Journal of Pure &Applied Physics, 24 (1986) 19.
[61] 詹淑靜,“三氧化鎢電色膜層之製作及其電致色變性質之研究”,國立中央大學光電科學研究所碩士論文,2000。
[62] J. N. Yao, K. Hashimoto and A. Fuijishima, 355 (1992) 624.
[63] S. H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson and S. K. Deb, Appl. Phys. Lett, 74 (1999) 242.
[64] O. F. Shirmer, V. Wittwer, G. Baur and G. Braudt, J. Electrochem. Soc, 124 (1977) 749.
[65] 鄭惇文,“毛細管電泳電化學偵測系統:以商業化元件光纖連接器改善毛細管與電極對準的問題”,國立中山大學化學研究所碩士論文,2001。
[66] 羅吉宗,“薄膜科技與應用”,全華科技圖書股份有限公司,2004,p.4-2。.
[67] 伍秀菁、汪若文、林美吟,“真空技術與應用”,全華科技圖書股份有限公司,2001,p.360。
[68] 李正中,“光學薄膜製鍍技術與應用”,行政院國科會光電小組編印,1983,p.1-29。
[69] 柯賢文,“表面與薄膜處理技術”,全華科技圖書股份有限公司,(2005),p.1。
[70] 陳建人,“真空技術與應用”,行政院國家科學委員會精密儀器發展中心出版。
[71] 陳偉謙,“鋰摻雜氧化鎳薄膜導電性與透光性之研究”,國立成功大學材料科學及工程研究所碩士論文,(2007)。
[72] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and Jr. S. B. Warner, INC. (1995) p.521.
[73] A. Lourenco, A. Gorenstein, S. Passerini, W. H. Smyrl, M. C. A. Fantini and M. H. Tabacniks, J. Electrochem. Soc, 145 (1998) 706.
[74] C. G. Granqvist, Elsevier. p.165.
[75] 溫治宇,“氧化鎢-氧化鎳互補式電致色變元件及新穎膠態電解質之研究”,正修科技大學電機工程研究所碩士論文,2010。
[76] 黃國瑜,“膠態高分子電解質之研製及其應用於電致色變元件之開發”,國立中山大學電機工程學系碩士論文,2013。
[77] 汪建民,“材料分析",中國材料科學學會,(1998)。
[78] B. D. Cullity, “Elements of X-ray Diffraction", (1978) p.102.
[79] 施敏,“半導體元件物理與製作技術(第二版)”,國立交通大學出版社,p.436。
[80] M. Grätzel, CRC. Press (1989) 91.
[81] J. Pelleg, L. Z. Zevin and S. Lungo, Thin Solid Films 197 (1991) 117.
[82] H. W. Ruu and G. P. Chol, J. Mater. Sci. 39 (2004) 4375.
[83] S. Stafstrom and J. L. Bredas, Phys. Rev. Lett., 59 (1987) 13.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code