Responsive image
博碩士論文 etd-0731115-110313 詳細資訊
Title page for etd-0731115-110313
論文名稱
Title
結晶-非晶雙層鉻摻雜氧化銦之室溫鐵磁性研究
Room temperature Ferromagnetic of Crystalline-Amorphous Bilayer Cr doped In2O3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-25
繳交日期
Date of Submission
2015-08-31
關鍵字
Keywords
磁性材料、電子能量損失光譜、界面、稀磁性半導體、氧化銦
Indium Oxide, Dilute Magnetic Semiconductor, Interface, Electron Energy Loss Spectrum, Magnetic materials
統計
Statistics
本論文已被瀏覽 5683 次,被下載 8
The thesis/dissertation has been browsed 5683 times, has been downloaded 8 times.
中文摘要
本研究採用射頻磁控濺鍍製程,利用共鍍法(co-sputtering)將鉻摻雜氧化銦(Cr-doped In2O3, CIO)薄膜沈積於SiO2(100nm)/Si基板。腔體背景壓力約為3x10-7 Torr,薄膜成長壓力為5 x10-3 Torr,依據氧化銦、鉻靶材濺鍍功率不同,調控成長時間將薄膜厚度控制在100奈米(nm)。實驗分為兩部分:(1)氧化銦靶材濺鍍功率固定在25W,鉻濺鍍功率則分別為5、9、13W;(2)氧化銦靶材濺鍍功率固定在50 W,鉻濺鍍功率則分別為5、10、13 W。
由X光繞射結果得知,25W 濺鍍之CIO薄膜僅有微弱(222)繞射峰,意味結晶程度不佳。當濺鍍功率提升至50W,CIO薄膜則出現明顯之(222)、(400)與(440)繞射峰。但隨鉻濺鍍功率增加,繞射峰強度均隨之下降。利用高解析穿透式電子顯微鏡分析薄膜微結構,25W濺鍍之CIO薄膜幾乎為非晶結構,但50W濺鍍之CIO薄膜顯示底層非晶-上層結晶之類雙層結構,且非晶與結晶介面為鋸齒形狀。元素成份分析則顯示,25W濺鍍之CIO薄膜的Cr元素濃度由2.4%增加至6.2%;50W濺鍍之CIO薄膜,濃度由2.7%增加至4.7%。超導量子干涉儀磁性量測結果顯示,25W濺鍍之CIO薄膜其飽和磁化量並不隨摻雜Cr原子濃度增加而改變,維持約0.45 emu/c.c.;但50W濺鍍之CIO薄膜,隨Cr摻雜濃度增加而增大至1.78emu/c.c.。電子自旋共振之吸收譜強度變化則與量測之飽和磁化量變化一致,但所有薄膜均僅有單ㄧ吸收峰行為。
為研究雙層CIO薄膜所產生的鐵磁耦合來源,進一步分析薄膜內Cr元素之化學態,由電子能量損失譜結果得知, Cr離子在非晶區較結晶區有較高的氧化態。綜合以上所述,電子自旋共振能譜顯示僅有單一種氧化態Cr離子貢獻鐵磁耦合,但雙層結構CIO薄膜之結晶與非晶區卻具有不同氧化態Cr離子,推論其磁性耦合增強原因可能是Cr離子於結晶與非晶區化學態不平衡,導致電荷透過鋸齒狀界面轉移,轉移的電荷因庫侖排斥力使自旋同一方向,進而引致鐵磁性。
Abstract
The study demonstrates that increasing ferromagnetic coupling can be achieved by doping dilute Cr ions in a zig-zag interface separated amorphous-crystalline bilayer indium oxide films . Saturation magnetization of bi-layered CIO films monotonically increases from ~0.27 to ~1.78 emu/c.c. with rising Cr doping concentration in contrast with a constant of ~0.45 emu/c.c. for pure amorphous films. Absorption intensity of electron spin resonance for bi-layered films also increases with rising Cr concentration, but almost unchanged for pure amorphous films. Chemical state analysis indicates that Cr ions are higher valence state in amorphous regions than in crystalline regions. The results suggest that doped Cr ions in amorphous and crystalline regions form different valence configurations, creating a charge reservoir which transfers electrons through zig-zag interfaces and in turn enhances ferromagnetism.
目次 Table of Contents
論文審定書........................................................................................................................i
誌謝...................................................................................................................................ii
摘要..................................................................................................................................iii
Abstract............................................................................................................................iv
目錄..................................................................................................................................vi
圖次.................................................................................................................................viii
第一章 緒論.................................................................................................................. 1
1-1 前言.......................................................................................................................... 1
1-2 稀磁性半導體發展之簡介......................................................................................... 2
1-3 文獻回顧................................................................................................................... 3
1-4 研究動機..................................................................................................................10
第二章 基礎原理..........................................................................................................11
2-1 氧化銦薄膜特性簡介............................................................................................11
2-2 磁性材料種類.......................................................................................................11
2-2-1 順磁性...........................................................................................................12
2-2-2 反磁性...........................................................................................................12
2-2-3 鐵磁性...........................................................................................................13
2-2-4 反鐵磁性.......................................................................................................13
2-3 鐵磁性來源...........................................................................................................14
2-3-1 RKKY理論模型.............................................................................................14
2-3-2束縛極化子模型.............................................................................................15
2-3-3 VRH同心圓模型............................................................................................16
第三章 實驗方法與儀器簡介........................................................................................18
3-1 射頻磁控濺鍍.......................................................................................................18
3-2 X-Ray繞射儀........................................................................................................19
3-3 電性量測性統.......................................................................................................20
3-4 穿透式電子顯微鏡................................................................................................21
3-5 超導量子干涉儀....................................................................................................22
3-6 電子順磁共振.......................................................................................................23
3-7 實驗流程..............................................................................................................24
第四章 實驗結果與討論...............................................................................................26
4-1 X-ray晶格繞射(XRD)結構分析............................................................................26
4-1-1不同濺鍍功率純氧化銦薄膜之晶格繞射分析..................................................26
4-1-2不同鉻原子濃度摻雜25、50W氧化銦薄膜之晶格繞射分析............................27
4-2 電子穿透式顯微鏡(TEM)微結構分析...................................................................29
4-2-1不同濺鍍功率純氧化銦薄膜之微結構分析.....................................................29
4-2-2不同鉻原子濃度摻雜25、50W氧化銦薄膜之微結構、元素分析....................30
4-3 電性分析.............................................................................................................31
4-3-1不同鉻原子濃度摻雜25W氧化銦薄膜之變溫電阻率、霍爾係數分析…..........31
4-3-2不同鉻原子濃度摻雜50W氧化銦薄膜之變溫電阻率、霍爾係數分析…..........32
4-4 超導量子干涉儀(SQUID)磁性分析......................................................................33
4-3-1不同鉻原子濃度摻雜25、50W氧化銦薄膜之磁化曲線分析............................33
4-5 電子損失能譜(EELS)化學組態分析.....................................................................36
4-4-1不同鉻原子濃度摻雜25、50W氧化銦薄膜之化學組態分析............................36
4-6 電子順磁共振(EPR)分析.....................................................................................40
4-5-1不同鉻原子濃度摻雜25、50W氧化銦薄膜之過渡元素分析............................40
4-7 鐵磁性起源之探討...............................................................................................43
第五章 結論.................................................................................................................46
參考文獻..........................................................................................................................48
參考文獻 References
[1] H. Munekata, H. Ohno*, S. von Molnar, Armin Segmuller, L. L. Chang, and
L. Esaki“Diluted Magnetic III-V Semiconductors” Phys. Rev. Lett. 63, 17(1989).
[2] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl*, Y. Ohno ,and K.
Ohtani“Electric-feld control of ferromagnetism” Nature 408(2000).
[3] T. Dietl*“Spintronics And Ferromagnetism In Wide-Band-Gap Semiconductors
” Proceedings of 27th International Conference on Physics of Semiconductors
(2004).
[4] Yuji Matsumoto et al.“Room-Temperature Ferromagnetism in Transparent
Transition Metal–Doped Titanium Dioxide” Science 291,2(2001).
[5] J. Philip et al., "Carrier-controlled ferromagnetism in transparent oxide
semiconductors," Nature Maters. 5, 298-304 (2006)
[6] Hannes Raebiger et al., "Control of Ferromagnetism via Electron Doping in
In2O3:Cr," Phys. Rev. Lett. 101, 027203 (2008).
[7] Raghava P. Panguluri et al., "Ferromagnetism and spin-polarized charge carriers
in In2O3 thin flms," Phys. Rev. B 79, 165208(2009)
[8] Boris B. Straumal et al., "Magnetization study of nanograined pure and Mn-doped
ZnO films: Formation of a ferromagnetic grain-boundary foam," Phys. Rev. B 79,
205206 (2009)
[9] Hao Gu et al., "Effect of oxygen deficiency on room temperature ferromagnetism
in Co doped ZnO," Appl. Phys. Lett. 100, 202401 (2012)
[10] J. M. D. Coey et al., “Ferromagnetism in defect-ridden oxides and related
materials,” New J. Phys. 12, 053025 (2010)
[11] Z. Xiong et al., “Influence of Ga doping on the Cr valence state and
ferromagnetism in Cr:ZnO films,” Appl. Phys. Lett. 102, 022414 (2013)
[12] M. A. Ruderman, and C. Kittel“Indirect Exchange Coupling of Nuclear
Magnetic Moments by Conduction Electrons”Phys. Rev.96,1(1954)
[13] J. M. D. Coey et al.,“Donor impurity band exchange in dilute ferromagnetic
oxides”Nature Publishing Group(2005)
[14] H. Chou*, C. P. Lin, J. C. A. Huang, and H. S. Hsu“Magnetic coupling and
electric conduction in oxide diluted magnetic semiconductors” Phys. Rev. B
77, 245210(2008)
[15] A. Shegelaya et al.,“EPR Evidence of Jahn-Teller Polaron Formation in
La12xCaxMnO31y”Phys. Rev. Lett. 77, 26(1996).
[16]胡裕民,物理雙月刊,26期4卷587頁(2004)。
[17]黃榮俊、許華書,物理雙月刊,26期4卷599頁(2004)。
[18]許峻瑜“快速熱退火對稀薄鉻摻雜氧化銦鋅薄膜之結構與磁特性研究”台
灣磁性技術協會會訊,56期34頁(2013)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code