Responsive image
博碩士論文 etd-0731115-111011 詳細資訊
Title page for etd-0731115-111011
論文名稱
Title
廢輪胎導入鋼液溶化製程之模型建立與數值模擬
The Model Development and Numerical Simulation for Scrap Tyre Buring in the Steel Melting Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-14
繳交日期
Date of Submission
2015-08-31
關鍵字
Keywords
轉爐、煉鋼、數值模型、廢輪胎燃燒、破壞去除效率
Numerical simulation, tire combustion, Steelmaking, hot furnace, destruction and removal efficiency
統計
Statistics
本論文已被瀏覽 5660 次,被下載 0
The thesis/dissertation has been browsed 5660 times, has been downloaded 0 times.
中文摘要
本研究建立了一個三維暫態數值模型,模擬轉爐製程導入輪胎之燃燒現象。模型中使用k-ε紊流模型搭配Finite-rate/eddy-dissipation燃燒模型,並將輪胎塊擬合成球狀,以DPM(Discrete phase model)離散相模型投料入轉爐中,以及考慮頂底吹氧氣至鐵水的脫碳反應與二次燃燒反應。
研究結果發現輪胎塊在高溫下裂解時,裂解速率會快速達到穩定,且在整個過程幾乎維持定值。在輪胎塊的投料參數分析上,其模擬結果顯示當輪胎塊尺寸越大,裂解時間增加,使揮發物有更充足時間燃燒,其揮發物破壞去除(DRE)效率會些微增加;而當提升輪胎總質量,裂解時間也增加,但因裂解量增多,會使破壞去除效率降低。此外,當鐵水對頂吹氧槍的氧氣消耗比例增加時,轉爐內的氧氣量會減少導致燃燒反應降低,使輪胎塊裂解時間增長,破壞去除效率也降低。本研究中也比較了輪胎塊在鐵水表面分布差異以及不同紊流模式,對模擬結果的影響。
本研究成功模擬出導入輪胎轉爐製程之燃燒現象,有助於設計廢輪胎在轉爐製程的投料策略。其投料策略以高破壞去除效率考量,建議增加輪胎塊尺寸及增加頂吹氧氣於轉爐中的比例;若以快速消耗廢輪胎考量,建議減少輪胎塊尺寸及每次投料之質量。
Abstract
In this study, a transient 3-D numerical model is built to investigate the tire burning in a furnace. In this study, the turbulence k-ε model and the combustion finite-rate/eddy-dissipation model are used to simulate the tire burning in hot furnace. The batch of tyre pieces is tossed in the furnace by using the discrete phase model (DPM) with spherical shape.
In this study, it is found that the pyrolysis rate of a tyre piece will quickly reach a certain rate and maintain constant in a hot furnace of high temperatures. The simulation results show that the pyrolysis time and the destruction and removal efficiency(DRE) increase with the size of tire. In addition, the pyrolysis time increases with the increase in the mass of tire, but DRE decreases. The more consumed amount of top-injection oxygen by liquid iron cause less oxygen in the furnace, and consequently, results in less combustion heat release and longer pyrolysis time of tyre pieces. Furthermore, the influences of the distribution of tyre pieces and different turbulence models were also investigated in this study.
This study has successfully simulated the phenomena of tyre burning process in a hot furnace and the simulation results can be used to design a batch-feeding tactic for waste tyre. It is suggested that to use large tyre pieces and reduce the oxygen consumption by liquid iron for high DRE. On the other hand, to reduce pyrolysis time for a batch of tyre, the suggestion is to decrease the batch-feeding mass and tyre size.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
符號說明 xiii
第1章 序論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 6
1.4 本文架構 7
第2章 研究方法與數值模型 8
2.1 研究方法 8
2.2 模型介紹 8
2.3 統御方程式 12
2.3.1 標準k-ε模型傳輸方程(Two-equation model) 14
2.3.2 Finite-rate/Eddy-dissipation模型 15
2.4 Discrete Phase Model(DPM)模型 17
2.4.1 輪胎粒能量平衡 19
2.5 裂解與燃燒反應 21
2.5.1 裂解反應 21
2.5.2 燃燒反應 22
2.6 氧氣接觸鐵水消耗部份氧氣現象 24
2.7 網格建立 25
2.8 邊界條件 26
2.9 揮發物破壞去除效率(DRE) 27
第3章 結果與討論 28
3.1 單顆及大量輪胎塊模擬結果 28
3.1.1 單顆輪胎塊裂解時間 28
3.1.2 大量投料裂解現象 29
3.2 大量投料基準參數模擬結果 36
3.2.1 流場現象 38
3.2.2 氧氣接觸鐵水部份消耗之現象 44
3.2.3 二次燃燒 45
3.2.4 不同投料分佈方式比較 51
3.2.5 不同模型流場比較 56
3.3 參數比較 61
3.3.1 輪胎塊尺寸 61
3.3.2 輪胎塊總質量 64
3.3.3 鐵水對頂吹氧槍之氧氣消耗現象 67
3.3.4 曲面擬合 70
第4章 結論 73
第5章 未來展望 75
參考文獻 76
附錄 80
方型轉爐建立 80
模擬結果 81
揮發物高度 81
流場現象 83
UDF(user defined function) 90
參考文獻 References
[1] Ron Zevenhoven, Loay Saeed , “Automotive shredder residue (ASR) and compact disc (CD) waste: options for recovery of materials and energy ”, Final report for study funded by Ekokem Oy Ab , (2002).
[2] Anke BREMS, Jan BAEYENS, Raf DEWIL, “RECYCLING AND RECOVERY OF POST-CONSUMER PLASTIC SOLID WASTE IN A EUROPEAN CONTEXT” , THERMAL SCIENCE, 16(2012)669-685.
[3] Robert C. Poller, ”Reclamation of Waste Plastics and Rubber : Recovery of Materials and Energy",J. ”, Chem. Tech. Biotechnol, 30(1980)152-160.
[4] Rehan Ahmed, Arnold van de Klundert, Inge Lardinois, “RUBBER WASTE Options for Small-scale Resource Recovery :Urban Solid Waste Series 3”, WASTE Nieuwehaven 201,(1996).
[5] 邱信欽、張四立、張添晉,廢輪胎再利用成效提升及廢輪胎、廢鉛蓄電池、廢潤滑油回收流向調查分析,”行政院環境保護署”,(2010).
[6] T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, C. S. Zender, “Bounding the role of black carbon in the climate system: A scientific assessment ”. Journal of Geophysical Research: Atmospheres ,118(2013)5380-5552.
[7] M. H. Joulazadeh,” Using Scrap Tires in EAFs as a Substitute for Carbon ”, International Journal of ISSI, 5(2008)36-40.
[8] Juan Daniel Martı´nez , Neus Puy , Ramo´n Murillo , Toma´s Garcı´a , Marı´a Victoria Navarro , Ana Maria Mastral, “Waste tyre pyrolysis – A review ”, Renewable and Sustainable Energy Reviews, 23(2013)179-213.
[9] M. Juma, Z. Koreňová, J. Markoš, J. Annus, Ľ. Jelemenský, ”PYROLYSIS AND COMBUSTION OF SCRAP TIRE”, Petroleum & Coal,48(2006)15-26.
[10] Shouquan Li, Qingfeng Yao, Yi-Ming Cheng, Jianhua Yan, and Kefa Cen, ”Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor”, Ind. Eng. Chem. Res. ,43(2004)5133-5145.
[11] Paul T. Williams, Serpil Besler, ”Pyrolysis-thermogravimetric analysis of tyres and tyre components”, Fuel ,74(1995)1277-1283.
[12] Kessinee Unapumnuk, Tim C. Keener, Mingming Lu, Soon-Jai Khang, ”Pyrolysis Behavior of Tire-Derived Fuels at Different Temperatures and Heating Rates”, Journal of the Air & Waste Management Association,56(2006)618-627.
[13] Nepal Chandra Roy, Akter Hossain, Yuji Nakamura, ”A universal model of opposed flow combustion of solid fuel over an inert porous medium”, Combustion and Flame, 161(2014)1645-1658.
[14] Nepal Chandra Roy, ”Modeling and theoretical study of combustion of solid fuel over an inert porous medium”, Candidate for the degree of Doctor of Philosophy,(2014).
[15] Blaid Alganash, Manosh C. Paul, Ian A. Watson, ”Numerical investigation of the heterogeneous combustion processes of solid fuels”, Fuel, 141(2015)236-249.
[16] Roberto Aguado, Martı´n Olazar, David Ve´lez, Miriam Arabiourrutia, Javier Bilbao, ”Kinetics of scrap tyre pyrolysis under fast heating conditions”, J. Anal. Appl. Pyrolysis,73(2005)290-298.
[17] Augustine Quek, Rajasekhar Balasubramanian, ”Mathematical modeling of rubber tire pyrolysis”, Journal of Analytical and Applied Pyrolysis,95(2012)1-13.
[18] A. ZABANIOTOU, J. LAGOUDAKIS, E. TOUMANIDOU, G. STAVROPOULOS, ”Energetic Utilization of Used Tires”, Energy Sources,24(2002)843-854.
[19] C. Berrueco, E. Esperanza, F.J. Mastral, J. Ceamanos, P. Garcı´a-Bacaicoa, ” Pyrolysis of waste tyres in an atmospheric static-bed batch reactor:Analysis of the gases obtained”, J. Anal. Appl. Pyrolysis,74(2005)245-253.
[20] F. 奧特斯, “鋼冶金學”, 北京冶金工業出版社,(1996).
[21] Y. DOH, P. CHAPELLE, A. JARDY, G. DJAMBAZOV, K. PERICLEOUS, G. GHAZAL, P. GARDIN, ”Toward a Full Simulation of the Basic Oxygen Furnace: Deformation of the Bath Free Surface and Coupled Transfer Processes Associated with the Post-Combustion in the Gas Region”, The Minerals, Metals & Materials Society and ASM International,44(2013)653-670.
[22] Donald Giddings ,”Investigation into the operation of a cement works precalciner vessel”, thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy,(2000).
[23] Incorporated, F., FLUENT 6.3.26-user’s guide, (2006).
[24] D. Y. C. Leung , C. L. Wang, ”Kinetic Modeling of Scrap Tire Pyrolysis”, Energy & Fuels,13(1999)421-427.
[25] Sugata Chakraborty, Saptarshi Kar, Saikat Dasgupta, Rabindra Mukhopadhyay, Samar Bandyopadhyay, Mangala Joshi, Suresh C. Ameta ,”Study of the properties of in-situ sodium activated and organomodified bentonite clay – SBR rubber nanocomposites – part II: Physical property”, Polymer Testing,29(2010)679-684.
[26] S.-Y. Hsu, “Flame Spread and Extinction Over Solids in Buoyant and Forced Concurrent Flows: Model Computations and Comparison with Experiments”, Ph. D. Thesis, Case Western Reserve University, Cleveland, OH, USA,(2009).
[27] Mingyan Gu, Guang Chen, Mingchuan Zhang, D. (Frank) Huang, Pinakin Chaubal, Chenn Q. Zhou,” Three-dimensional simulation of the pulverized coal combustion inside blast furnace tuyere”, Applied Mathematical Modelling ,34(2010)3536-3546.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.253.170
論文開放下載的時間是 校外不公開

Your IP address is 52.14.253.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code