Responsive image
博碩士論文 etd-0731115-170606 詳細資訊
Title page for etd-0731115-170606
論文名稱
Title
改進低同調干涉量測系統應用於環形共振腔分析之研究
Improved Technique for the Characterization Micro-ring Resonator using Low Coherence Measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-08-31
關鍵字
Keywords
積體光學、矽光學、環形共振腔、低同調干涉、訊號處理
Silicon photonics, integrated optics, ring resonator, low coherence interferometry, signal process
統計
Statistics
本論文已被瀏覽 5690 次,被下載 49
The thesis/dissertation has been browsed 5690 times, has been downloaded 49 times.
中文摘要
低同調干涉量測系統被使用來精確地量測光波導元件,此系統建立在一馬赫-詹德干涉儀基礎上。藉由低同調的光源,我們可以使光在波導裡的每一個獨立的光路徑產生干涉條紋,將這些干涉條紋做傅立葉轉換分析,可以獲得光在經過每一個路徑的振幅及相位響應,利用這些資訊我們即可以得到元件重要的參數。
然而,當使用此系統來測量環形共振腔時,干涉條紋彼此之間的距離和光在環形共振腔裡繞行一圈的長度有關。在有限的光源頻寬下量測小半徑的環形共振腔時,每個波包會與鄰近的波包產生嚴重的重疊,進而阻礙了我們去獨立地分析每一個光路徑。 因此,本論文提出了一種新的方法,透過訊號處理方法增加原本的光源頻寬,來克服光源頻寬限制下產生的干涉條紋重疊之問題,使我們可以成功地分析小半徑環形共振腔。又由於傳統的環形共振腔數學模型無法解釋環形共振腔頻譜分裂之現象,本論文使用的數學模型包含了環形共振腔耦合區域等效折射率變化產生之反射影響頻譜分裂。這些技術被使用在模擬以及實驗的分析上,使得估算出的參數誤差小於0.1%,此項成果將可讓人們未來在分析小半徑環型共振腔有更高的準確度。
Abstract
Low coherence interferometric measurement has been used to investigate
optical waveguide devices with high accuracy. It is based on a Mach-Zehnder
interferometer system. By utilizing an incoherent light source, one can generate separate interferogram feature for each optical path. By analyzing each interferogram feature individually via Fourier transformation, the amplitude and phase information can be obtained. The information allows one to extract key parameters of the device. The distance between adjacent features of a ring resonator is related to ring length. With small ring radius, the interferogram spectrum exhibits severe cross interference between adjacent features that hinders one to analyze the optical path individually. This thesis proposes a novel technique to overcome the light source bandwidth limitation. By replacing the actual light source with a much broader virtual Gaussian light source via signal processing, which allows one to characterize small radius micro-ring resonator. In addition, the traditional ring model cannot have good explanation for the splitting of the measured spectrum. By utilizing our new model which contains the coupling region induced reflection effect, the fitted ring parameters can perform very well with measured spectrum. This technique has been applied to both numerical simulations and experimental data with significant improvement of the extracted ring parameters. The fitting errors are less than 0.1% in our method. The improvements allow one to better understand the wavelength dependency properties of small radius micro-ring resonators.
目次 Table of Contents
中文審定書 i
摘要 iii
Abstract v
1 Introduction 1
1.1 Silicon photonics technology . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Micro-ring resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Principle of micro-ring resonator 9
2.1 Model and theory of micro-ring resonator . . . . . . . . . . . . . . . . . 9
2.1.1 All-pass type micro-ring resonator . . . . . . . . . . . . . . . . . 10
2.1.2 Add/drop type micro-ring resonator . . . . . . . . . . . . . . . . 13
2.2 Double-dip phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Single-dip condition . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Characterization and analysis method 23
3.1 Wavelength scan method . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Disadvantage of WSM . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Low coherence interferometric measurement . . . . . . . . . . . . . . . 27
3.2.1 Experiment setup and analysis . . . . . . . . . . . . . . . . . . . 27
3.2.2 Characteristic matrix . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Benefit and problem . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Analysis of micro-ring resonator with small radius 37
4.1 Windowing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Reshaping method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Simulation and experimental results . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Reshaping method optimization . . . . . . . . . . . . . . . . . . . . . . 55
5 Conclusion 59
Bibliography 61
Publications 67
參考文獻 References
[1] C. Corp., “Cisco visual networking index: Forecast and methodology, 2012 to 2017.” Cisco White Paper, 2013.
[2] C. Y. Wang, “Design and analysis of soi micro-ring resonator,” Master’s thesis, National Sun Yat-sen University, 7 2014.
[3] B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact si- sio2 microring resonator,” IEEE Photon. Technol. Lett., vol. 10, pp. 549–551, 1998.
[4] C. Shih-Jung, N. Chi-Yu, W. Zhipeng, and C. Yung-Jui, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett., vol. 20, pp. 1021–1023, 2008.
[5] S. J. Emelett and R. A. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol., vol. 23, pp. 1800–1807, 2005.
[6] V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature, vol. 431, pp. 1081–1084, 2004.
[7] V. KD, B. I, S. E, B. P, and B. R, “silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express, vol. 15, p. 7610, 2007.
[8] E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE Journal of selected topics in Quantum electronics, vol. 12, p. 4, 2006.
[9] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol., vol. 15, pp. 998–1005, 1997.
[10] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss soi photonic wires and ring resonators fabricated with deep uv lithography,” IEEE Photon. Technol. Lett., vol. 16, pp. 1328–1330, 2004.
[11] S. K. Selvaraja, G. Murdoch, A. Milenin, C. Delvaux, C. Ong, S. Pathak, D. Vermeulen, G. Stercks, G. Winroth, P. Verheyen, G. Lepage, W. Bogaerts, R. Baets, J. V. Campenhout, and P. Absil, “Advanced 300-mm wafer scale patterning for silicon photonics devices with low record loss and phase error,” in in Proceedings of 2012 Optoelectronics and Communication Conference, 2012.
[12] K. Okamoto, Fundamentals of Optical Waveguides. NY: Academic Press, 2 ed., 2006.
[13] H. A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1984.
[14] B. E. Little, S. T. Chu, and H. A. Haus, “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,” Opt. Lett., vol. 23, pp. 1570– 572, 1998.
[15] Y. Chen, J. Feng, Z. Zhou, J. Yu, C. J. Summers, and D. S. Citrin, “Fabrication of silicon microring resonator with smooth sidewalls,” J. Micro/Nanolith., vol. 8(4), p. 043060, 2009.
[16] C. Y. Chen, C. Y. Wang, and Y. J. Chen, “Analysis of soi micro ring resonator with reflection property using low coherence interferometry method,” in OECC, 2014.
[17] C. Y. Chen, “Analysis of soi micro-ring resonator,” Master’s thesis, National Sun Yat-sen University, 1 2015.
[18] S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express, vol. 15, pp. 10553–10561, Aug. 2007.
[19] D. Camille, Polymer microring resonators for optofluidic evanescent field sensors. PhD thesis, Diss. Ecole normale superieure de Cachan-ENS Cachan, 2012.
[20] W. Chen, Y.-J. Chen, M. Yan, B. McGinnis, and Z. Wu, “Improved techniques for the measurement of phase error in waveguide based optical devices,” J. Lightwave Technol, vol. 21, 2003.
[21] K. Takada, H. Yamada, and Y. Inoue, “Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexers,” J. Lightwave Technol., vol. 14, 1996.
[22] H. Yamada, H. Sanjoh, M. Kohtuku, K. Takada, and K. Okamoto, “Measurement of phase and amplitude errors in arrayed-waveguide grating multi/demultiplexers based on dispersive waveguide,” J. Lightwave Technol., vol. 18, pp. 1309–1320, 2000.
[23] Y. Li, W. Chen, D. Chen, Y. Zeng, H. Lu, and J. Yang, “A general characterizing method for ring resonators based on low coherence measurement,” J. Lightwave Technol., vol. 30, 2012.
[24] W. Chen, Z. Wang, W. Chen, and Y.-J. Chen, “General ring-resonator analysis and characterization by characteristic matrix,” J. Lightwave Technol., vol. 23, 2005.
[25] Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted mach-zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 19, pp. 1072–1074, 2007.
[26] Z. Wang and Y. J. Chen, “A systematic thermal control scheme for microring-based optical filters,” IEEE Photon. Technol. Lett., vol. 21, pp. 1268–1270, Sep. 2009.
[27] W. Chen, WDM Filters in All Optical Network. PhD thesis, University of Maryland, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code