Responsive image
博碩士論文 etd-0731116-085423 詳細資訊
Title page for etd-0731116-085423
論文名稱
Title
噴霧流動及熱傳性能分析
Flow/Heat Transfer Characteristics Analysis of Spray Cooling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
噴霧冷卻、沸騰熱傳曲線、液滴飛行動態、PZT壓電超音波微孔霧化片、液滴粒徑
PZT nozzle plate, Droplet characteristics, IPI, μPIV, boiling/cooling curve, Spray cooling
統計
Statistics
本論文已被瀏覽 5699 次,被下載 427
The thesis/dissertation has been browsed 5699 times, has been downloaded 427 times.
中文摘要
本論文研究噴霧流場與溫度場特性,主要分成三個部分來進行實驗及討論。使用了三種不同孔徑(dj =7, 10, 35 μm)的超音波震動微孔霧化片,所使用的加熱表面有訂製的金屬加熱圓板以及金屬加熱銅塊。
第一部分:針對工作流體為純水(DI water),利用微質點影像測速儀(μPIV),來拍攝噴霧流場的側面全域速度分布,並比較在不同高度和孔徑下的速度趨勢。分析其飛行中及撞擊平板時之物理特性。
第二部分:利用全像干涉粒徑分析儀(IPI),量測不同微孔徑下之側向噴霧液滴粒徑大小,以及其噴出微孔片的進場速度及接近測試平板的出場速度。並得到一粒徑分布變化。
第三部分:觀測金屬加熱表面的沸騰與冷卻現象,包含暫態和穩態曲線,並以熱電偶(T-type)記錄表面溫度分布,進而分析噴霧冷卻對散熱的速率及效果。實驗中的主要參數為孔徑大小(dj =7,10,35 μm)、不同噴霧高度(H=30, 40, 50, 70, 90 mm)以及不同加熱平板表面溫度(Tc=300, 200, 100 ºC)。
Abstract
Spray cooling has been proven to be efficient in managing high power thermal load. Due to the MEMS technology, the spray nozzle plate has been reduced to minute size or even microscale with low power consumption. However, several of the key heat transfer mechanisms are still not well understood.
The main goal of this study is to observe the velocity characteristics of the spray field, droplets distribution along the downstream, the boiling/cooling curves and the cooling performance.
In this study, we use a commercial PZT nozzle plate with three different nozzle diameters of dj = 7 μm, 10 μm and 35 μm. The corresponding volumetric rate is 3.47 ml/min, 6.53 ml/min and 50 ml/min, respectively. The PZT atomizer is composed of Ni-Co alloy nozzle plate bounded to the PZT ring actuator. The approximate numbers of micro nozzles on a circular Ni-Co plate are 2288 and 1071 corresponding to dj = 7 μm and 35 μm, respectively.
We use DI water as working fluid spraying on a copper flat heater which the target surface area is 2x2 cm2 and with a 14.5 mm thickness. The main experimental parameters are the spray height, H (30, 40, 50, 70, 90 mm), the initial temperature of the heater surface, Ts (300, 200, 100 ºC), and nozzle diameter, dj (7, 10, 35 μm). Both a transient and steady boiling curve are obtained as well as the quenching cooling curve. The results show that the average heat transfer coefficient (HTC) and the associated critical heat flux(CHF) could be over 2W/cm-K(HTC) and 200W/cm2(CHF), respectively.
Furthermore, by using micro particle image velocimetry (μPIV) and Interferometric particle Imaging (IPI) systems, we could image and analyze the velocity and droplet size of the spray field. Besides, we also study the droplets dynamics to understand the droplet-surface interactions relevant to spray cooling.
目次 Table of Contents
CONTENTS
Page
論文審定書.................................................................................................i
謝 誌........................................................................................................ ii
中文摘要...................................................................................................iv
ABSTRACT ..............................................................................................v
CONTENTS.............................................................................................vii
LIST OF TABLE........................................................................................x
LIST OF FIGURE......................................................................................xi
NOMENCLATURE.....................................................................................xv
CHAPTER 1 Introduction............................................................................1
1-1 Backgroung.....................................................................................1
1-2 Characteristics of PZT piezoelectric vibrating plate.............................1
1-3 Structure of Atomization...................................................................2
1-4 Droplet size and measurement mode.................................................4
1-5 Development Background.................................................................5
1-6 Literature review...............................................................................8
1-7 Research purpose...........................................................................20
CHAPTER 2 EXPERIMENT SYSTEM and EQUIPMENT.............................26
2-1 Experimental equipment overview.....................................................26
2-2 Spray atomization and fluid supply system........................................27
2-3 Optics photography system..............................................................28
2-3-1 μPIV system............................................................................28
2-3-2 IPI system...............................................................................30
2-4 Heating system...............................................................................31
2-5 Data acquisition system...................................................................32
2-6 Other equipments............................................................................33
CHAPTER 3 EXPERIMENTAL METHODS and PROCEDURES...................46
3-1 Micro-spray system design and production.........................................46
3-2 Principle of Optics............................................................................47
3-2-1 μPIV system..............................................................................47
3-2-2 IPI system.................................................................................48
3-3 Experiment parameters.....................................................................48
3-4 Optics experimental system..............................................................50
3-4-1 Procedure of μPIV system..........................................................50
3-4-2 Procedure of IPI system.............................................................50
3-5 Production of heating system and test surface....................................51
3-5-1 Heating system of copper............................................................51
3-5-2 Experimental method in temperature measurement........................52
3-5-3 Experiment procedures of temperature field...................................56
3-5-4 Data analysis..............................................................................59
CHAPTER 4 THEORETICAL ANALYSIS.....................................................68
4-1 Definition of spray angle (β)...............................................................68
4-2 Definition of Renolds number (Re)......................................................68
4-3 Definition of Webber number (We)......................................................69
4-4 Definition of Sauter mean diameter (d32)............................................70
4-5 Calculation of heat transfer performance............................................71
4-5-1 Calculation of surface temperature (Tw)........................................71
4-5-2 Calculation of heat flux (Q").........................................................72
4-5-3 Calculation of heat transfer coefficient (ħ).....................................73
CHAPTER 5 UNCERTAINTY ANALYSIS.....................................................74
CHAPTER 6 RESULTS AND DISCUSSTION....................... .......................81
6-1 μPIV –spray velocity distribution.......................................................81
6-1-1 Characteristics of three different nozzle plates..............................82
6-1-2 Centerline velocity along the downstream.....................................83
6-1-3 Outlet velocity and the impact velocity at different spray height.....84
6-1-4 Spray velocity profile at different z-position without/with heating.....85
6-2 IPI—droplet size and distribution.......................................................86
6-3 Boiling and cooling curve..................................................................86
6-3-1 Quenching cooling curve.............................................................87
6-3-2 Transient boiling curve................................................................89
6-3-3 Steady boiling curve...................................................................90
CHAPTER 7 CONSLUSION AND RECOMMENDATION .............................118
7-1 Conclusions...................................................................................118
7-2 Recommendations..........................................................................120

REFERENCES........................................................................................122
APPENDIX A..........................................................................................144
參考文獻 References
References
1. R.A. Castleman, Jr., 1930, "The Mechanism of the Atomization of Liquids," Buren of Standards Journal of Research, Vol. 6, pp. 369-376.
2. L. H. Wachter and N. A. J. Westerling, 1966, "The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State," Chemical Engineering Science, Vol. 21, pp. 1047-1056.
3. D. E. Titon, M. R. Pais, and L. C. Chow, "High Power Density Spray
Cooling," Technical Report, Wright Research & Development Center,
1989, WRDC-TR-89-2082.
4. M. Ghodbane and J. P. Holman, 1991, "Experimental Study of Spray Cooling with Freon-113," International Journal of Heat and Mass Transfer, Vol. 34, pp. 1163-1174.
5. M. S. Sehmbey, M. R. Pais, and L. C. Chow, 1992, "Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray
Cooling, " Journal of Thermophysics and Heat Transfer, Vol. 6,
pp. 505-512.
6. K. A. Estes and I. Mudawar, 1995, "Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces," International Journal of Heat and Mass Transfer, Vol. 38, pp. 2895-2996.
7. S. Chandra, M. D. Marzo, Y. M. Qiao, and P. Tartarini, "Effect of Liquid-Solid Contact Angle on Droplet Evaporation," Fire Safety Journal, Vol. 27, 1996, pp. 141-158.
8. J. Yang, L. C. Chow, and M. R. Pais, 1996, "Nucleate Boiling Heat Transfer in Spray Cooling," Journal of Heat Transfer -Transactions of the ASME, Vol. 118, pp. 668-671.
9. I. Mudawar and K. A. Estes, 1996, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," Journal of Heat Transfer-Transactions of the ASME, Vol. 118, pp. 672-679.
10. J. E. Gonzalez and W. Z Black, 1997, "Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface," Journal of Heat Transfer-Transactions of the ASME, Vol. 119, pp. 279-287.
11. D. B. John, J. S. Clinton, and I. Mudawar, 1997, "Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface," International Journal of Heat and Mass Transfer, Vol. 40, pp. 247-267.
12. K. Oliphant, B. W. Webb, and M. Q. Mcquay, 1998, "An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-boiling Regime," Experimental Thermal and Fluid Science, Vol. 18, pp. 1-10.
13. J. J. Huddle, L. C. Chow, S. Lei, A. Marcos, D. P. Rini, S. J. Lindauer II, M. Bass, and P. J. Delfyett, 2000, "Thermal Management of Diode Laser Arrays, Semiconductor Thermal Measurement and Management Symposium," Sixteenth Annual IEEE, pp. 154 -160.
14. J. Y. Murthy, C. H. Amon, K. Gabriel, P. Kumta, S. C. Yao, D. Boyalakuntla, C. C. Hsieh, A. Jain, S. V. Narumanchi, K. Rebello, and C. F. Wu, "MEMS-Based Thermal Management of Electronics Using Spray Impingement, 2001," Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging, July 8-13, Kauai, Hawaii, USA, pp. 1-12.
15. G.Aguilar, W. Verkruysse, B. Majaron, L.O. Svaasand, E.J. Lavernia, and J.S. Nelson, 2001, "Measurement of Heat Flux and Heat Transfer Coefficient During Continuous Cryogen Spray Cooling for Laser Dermatologic Surgery," IEEE J. Sel. Top. Quantum Electron., Vol. 7, pp. 1013-1021.
16. B.M. Pikkula, J. H. Torres, J.W. Tunnel, and B. Anvari, 2001, "Cryogen Spray Cooling: Effect of Droplet Size and Spray Density on Heat Removal," Lasers in Surgery and Medicine, Vol. 28, pp. 103-112.
17. W. Jia and H. H. Qiu, 2003, "Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling," Experimental Thermal and Fluid Science, Vol. 27, pp. 829-838.
18. L. Lin and R. Ponnappan, 2003, "Heat Transfer Characteristics of Spray Cooling in a Closed Loop, International Journal of Heat and Mass Transfer," Vol. 46, pp. 3737-3746.
19. S.S. Hsieh, T.C. Fan, and H.H. Tsai, 2004, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling," Int. J. of Heat and Mass Transfer, Vol. 47, pp. 5703-5712.
20. S.S. Hsieh, T.C. Fan, and H.H. Tsai, 2004, "Spray cooling characteristics of water and R-134a. Part II: transient cooling," Int. J. of Heat and Mass Transfer, Vol. 47, pp. 5713-5724.
21. B. Horacek, K.T. Kiger, and J. Kim, 2005, "Single Nozzle Spray Cooling Heat Transfer Mechanisms," International Journal of Heat and MassTransfer, Vol. 48, pp. 1425-1438.
22. A. G. Pautsch and T. A. Shedd, 2005, "Spray Impingement Cooling with Single- and Multiple-nozzle Arrays. Part I: Heat Transfer Data Using FC-72, International Journal of Heat and Mass Transfer," Vol. 48, pp. 3167-3175.
23. A. G. Pautsch and T. A. Shedd, 2005, "Spray Impingement Cooling with Single- and Multiple-nozzle Arrays. Part II: Visualization and Empirical Models," International Journal of Heat and Mass Transfer, Vol. 48, pp. 3176-3184.
24. J. R. Rybicki and I. Mudawar, 2006, "Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays," International Journal of Heat and Mass Transfer, Vol. 49, pp. 5-16.
25. S. S. Hsieh, and H.H. Tsai, 2006, "Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling," Archives of Dermatological Research, Vol. 298, pp. 82-96.
26. B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, 2006, "Spray angle effect during spray cooling of microelectronics: Experimental measurements and comparison with inverse calculations," Applied Thermal Engineering, Vol. 26, pp. 1788-1795.
27. S.S. Hsieh, and C.H. Tien, 2007, "R-134a spray dynamics and impingement cooling in the non-boiling regime," Int. J. of Heat and Mass Transfer, Vol. 50, pp. 502-512.
28. M. Visaria and I. Mudawar, "Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux," International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 5269-5278.
29. S.S. Hsieh, Y.F. Hsu, and M.L. Wang, "A Microspray-Based Cooling System for High Powered LEDs," Energy Conversion and Management, Vol. 78, 2014, pp. 338-346.
30. A.H. Lefebvre, 1989, "Atomization and Sprays," Hemisphere Publishing Corporation, New York.
31. I. Mudawar, and W.S. Valentine, 1989, "Determination of the local quench curve for spray-cooled metallic surfaces," Journal of Heat Treating, Vol. 7, pp. 107-121.
32. S. Deb, and S.C. Yao, 1989, "Analysis on Film Boiling Heat Transfer of Impacting Sprays," Int. J. of Heat and Mass Transfer, Vol. 32, pp. 2099-2112.
33. S. M. De Corso, and G. A. Kemeny, 1957, "Effect of Ambient and Fuel Pressure on Nozzle Spray Angle," ASME, J. of Engineering for Power, Vol. 79, No. 3, pp.607-615.
34. S. M. De Corso, 1960, "Effect of Ambient and Fuel Pressure on Spray Drop Size," ASME, J. of Engineering for Power, Vol. 82, pp. 10.
35. L. H. Wachter, and N. A. J. Westerling, 1966, "The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal state," Chem. Eng. Sci., Vol. 21, pp. 1047-1056.
36. W.M. Grissom, and F.A. Wierum, 1981, "Liquid Spray Cooling of a Heated Surface," Int. J. of Heat and Mass Transfer, Vol. 24, pp. 261-270.
37. W.C. Nieuwkamp, 1985, "Flow Analysis of a Hollow Cone Nozzle With Potential Flow Theory," Proceedings of 3rd International Conference on Liquid Atomization
And Spray Systems, pp.IIIC/1/1-9.
38. J.Ortman, and A.H.Lefebvre, 1985, "Fuel Distributions from Pressure Swirl Atomizers," J. of Propulsion and Power, Vol. 1, No. 1, pp. 11-15.
39. M. Suyari, and A. H. Lefebvre, 1986, "Film Thickness Mesaurements in A Simplex Swirl Atomizer," J. of Propulsion and Power, Vol.2, No.6, pp. 528-533.
40. J. K. Choi, and S. C. Yao, 1987, "Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray," Int. J. of Heat and Mass Transfer, Vol. 30, No.2, pp. 311-318.
41. X. F. Wang, and A. H. Lefebvre, 1987, "Mean Drop Sizes from Pressure Swirl Nozzles," J.l of Propulsion and Power, Vol. 3, No. 1, pp. 11-18.
42. A. R. Jones, 1982, "Design Optimization of a Large Pressure-Jet Atomizer for Power Plant," Proceedings of the 2nd Int. Conference on Liquid Atomization and Sprays, Madison, Wis., pp. 181-185.
43. S. Chandra, and C. T. Avedisian, 1991, "On the Collision of a Droplet with a Solid Surface," Proc. R. Soc. Lond., Vol. 432, pp. 13-41.
44. Q.V. Nguyen, R. H. Rangle, and Dunn-Rankin, D., 1991, "Measurement and Prediction of Trajectories and Collision of Droplets, " Int. J. Multiphase Flow , Vol. 10 , No. 2 , pp. 159-177.
45. M. S. Sehmbey, M. R. Pais, and L. C. Chow, 1992, "Effect of Surface Material Properties and Surface Charateristics in Evaporative Spray Cooling," AIAA J. Thermophysics and Heat Transfer, Vol. 6, pp. 505-512.
46. M.R. Pais, L.C. Chow, and E.T. Mahefkey, 1992, "Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling," J. of Heat Transfer,Transactions ASME, Vol. 114, pp. 211-219.
47. F. R. Zhang, S. Wakabayashi, and N. Tokuoka, 1994, "The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizers)," Nippon Kikai Gakkai
Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical
Engineers, Part B, Vol. 60, No. 570, pp. 675-680.
48. M. Kato, Y. Abe, Y. H. Mori, and A. Nagashima, 1995, "On the Spray Cooling Characteristics Under Reduced Gravity," J. Thermophysics and Heat Transfer, Vol. 9, No. 2, pp. 378-381.
49. T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, 1995, "Pool Boiling of N-Pentane, CFC-133, and Water Under Reduced Gravity," ASME J. Heat Transfer, Vol. 117, pp. 408-417.
50. G. M. Faeth, and L. P. Hsiang, 1995, "Structure and Breakup roperties of Sprays," J. of Multiphase Flow, Vol. 21, pp. 99-127.
51. S. Chandra, M. D. Marzo, Y.M. Qiao and Tartarini, 1996, “Effect of Liquid-Solid Contac Tangle on
Droplet Evaporation,” Fire Safety Journal, Vol. 27, pp. 141-158.
52. W. Q. Long, H. Ohtsuka, and T. Obokatam, "Characterization of Conical Spray Flow for Disel Engine by Means of Laser Doppler Methods," JSME International Journal, Series B, Vol. 39, No. 3, 1996, pp. 554-561.
53. J. Yang, L. C. Chow, and M. R. Pais, 1996, "Nucleate Boiling Heat Transfer in Spray Cooling," ASME Journal of Heat Transfer, Vol. 118, pp. 668-671.
54. I. Madawar, and K.A. Estes,1996, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," ASME J. of Heat Transfer, Vol.118, pp. 672-679.
55. K. Ramamurthi, and T. John Tharakan, 1997,"Atomization Characteristics of Swirled Annular Liquid Sheets" ICLASS-’97.
56. J. E. Gonzalez, and W. Z Black, 1997, "Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface," ASME J. Heat Transfer, Vol. 119, pp.279-287.
57. D.B. John, J. S. Clinton, and M. Issam, 1997, "Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface," Int. J. of Heat and Mass Transfer., Vol.40, pp.247-267.
58. Kitaru S. and Kenichi Y., 1996 "Spray Cooling Characteristics of Water and FC-72 under Reduced and Elevated Gravity for Space Application," Energy Conversion engineering Conference, IECEC 96, Proceedings of the 31st Intersociety, pp. 1500-1505.
59. K. Oliphant, B.W. Webb, and M.Q. Mcquay, 1998, "An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime," Experimental Thermal and Fluid Science, Vol.
18, pp. 1-10.
60. P. Tartarini, G. Lorenzini, and M. R. Randl, 1999, "Experimental Study of Water Droplet Boiling on Hot, Non-porous Surface," Heat and Mass Transfer, Vol. 34, pp. 437-447.
61. C.Humberto, A.M.Kubitzek, and O.Frank, 1999, "Dynamic Processes Occurring During the Spreading of Thin Liquid Films Produced by Drop Impact on Hot walls," Int. J. of Heat and Fluid Flow, Vol. 20 , pp. 470-476.
62. J.J. Huddle, L.C. Chow, S. Lei, A. Marcos, D.P. Rini,, S.J. Lindauer,, II, Bass, M., and P.J. Delfyett, 2000, "Thermal management of diode laser arrays, "Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE, pp.154 -160.
63. J.Y. Murthy, S.C. Yao, K. Gabriel,, P. Kumta, C.H. Amon, D. Boyalakuntla, C.C. Hsieh, A. Jain, S.V.J. Narumanchi, K. Rebello, and C.F. Wu, 2001, "MEMS-Based Thermal management of Electronics Using Spray Impingement," Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic
Packaging, July 8-13, Kauai,Hawaii,USA, pp.1-12.
64. K.I. Yoshida, Y. Abe, T. Oka, E.H. Mori, and A. Nagashima, 2001, "Spray Cooling Under Reduced
Gravity Condition," ASME J. of Heat Transfer, Vol. 123, pp. 309-318.
65. G. Aguilar, W. Verkruysse, B. Majaron, L. O. Svaasand, E. J. Lavernia, and J. S. Nelson, 2001,
"Measurement of heat flux and heat transfer coefficient
during continuous cryogen spray cooling for laser
dermatologic surgery," IEEE Journal on Spectrose Top Quantum
Electron, Vol. 7, pp. 1013-1021.
66. B. M. Pikkula, J. H. Torres, J. W. Tunnel, and B. Anvari, 2001, "Cryogen Spray Cooling: Effect of
Droplet Size and Spray Density on Heat Removal,"
Lasers in Surgery and Medicine, Vol. 28, pp. 103-112.
67. D. Kearns, D. H. Jian, R. H. Chen, and L. C. Chow, 2002, "A Parametric Study of Dielectric Spray
Cooling of a Row of Heaters in a Narrow Channel,"
Semiconductor Thermal Measurement and Management,
Eighteenth Annual IEEE Symposium, pp. 164-168.
68. R. H. Chen, L. C. Chow, and J. E. Navedo, 2002, "Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling," Int. J. of Heat and Mass Transfer,Vol.45, pp.4033-4043.
69. W. Jia, and H. H. Qiu, 2003, "Experimental Investigation of Droplet Dynamics and Heat Transfer in
Spray Cooling," Experimental Thermal and Fluid Science, Vol. 27,
pp. 829-838.
70. L. Lin, and R. Ponnappan, 2003, "Heat transfer characteristics of spray cooling in a closed loop," Int. J. of Heat and Mass Transfer, Vol. 46, pp. 3737-3746.
71. J.H. Kim, S.M. You, and U.S. Choi, 2004, "Evaporative spray cooling of plain and microporouscoated surfaces," Int. J. of Heat and Mass transfer, Vol. 47, pp. 3307-3315.
72. B. Horacek, K.T. Kiger, and J. Kim, 2005, "Single nozzle spray cooling heat transfer mechanisms," Int. J. of Heat and Mass Transfer, Vol. 48, pp. 1425-1438.

73. J.R. Rybicki, and I. Mudawar, 2006, "Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays, " Int. J. of Heat and Mass Transfer, Vol. 49, pp. 5-16.
74. C.C. Hsieh, and S.C. Yao, 2006, "Evaporative heat transfer characteristics of a water spray on
micro-structured silicon surfaces," Int. J. of Heat and Mass transfer,
Vol. 49, pp. 962-974.
75. A.G. Pautsch, and T.A. Shedd, 2006, "Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72," Int. J. of Heat and mass transfer, Vol. 49, pp. 2610-2618.
76. G. Orian, M. Jelinek, and A. Levy, 2006, "Spray formation of binary organic solution for an absorption refrigeration system," Applied Thermal Engineering, Vol. 26, pp. 872-880.
77. C. Sodtke, and P. Stephan, 2007, "Spray cooling on micro structured surfaces, " Int. J. of Heat and Mass Transfer, Vol. 50, pp. 4089-4097.
78. N. Karwa, S.R. Kale, and P.M.V. Subbarao, 2007, "Experimental study of non-boiling heat transfer
from a horizontal surface by water sprays," Experimental
Thermal and Fluid Science, Vol. 32, pp. 571-579.
79. S. Freund, A.G. Pautsch, T.A. Shedd, and S. Kabelac, 2007, "Local heat transfer coefficients in spray cooling systems measured with temperature oscillation IR thermography," Int. J. of Heat and Mass Transfer, Vol. 50, pp. 1953-1962.
80. G. Castanet, C. Maqua, M. Orain, F. Grisch, and F. Lemoine, 2007, "Investigation of heat and mass
transfer between the two phases of an evaporating
droplet stream using laser-induced fluorescence
techniques: Comparison with modeling," Int. J. of Heat and Mass
Transfer., Vol.50, pp.3670-3683.
81. P. Bhattacharya, A.N. Samanta, and S. Chakraborty, 2009, "Spray Evaporative Cooling to Achieve Ultra Fast Cooling in Runout Table," International Journal of Thermal Sciences, Vol.48, pp.1741-1747.
82. M.R.O. Panao, and A.L.N. Moreira, 2009, "Heat Transfer Correlation for Intermittent Spray
Impingement: A Dynamic Approach," International Journal of
Thermal Sciences, Vol.48, pp.1853-1862.
83. J.D. Schwarzkopf, S.G. Penoncello, and P. Dutta, 2009, "Enhanced Boiling Heat Transfer in Mesochannels," International Journal of Heat and Mass Transfer, Vol.52, pp.5802-5813.
84. N. Mascarenhas, and I. Mudawar, 2010, "Analytical and Computational Methodology for Modeling Spray Quenching of Solid Alloy Cylinders," International Journal of Heat and Mass Transfer, Vol.53, pp.5871-5883.
85. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, 2010, "Experimental Study on the Effects of Spray
Inclination on Water Spray Cooling Performance in Non-boiling
Regime." Experiment Thermal Fluid Science,Vol.34, pp.933-942.
86. B. Abbasi, J. Kim, and A. Marshall, 2010, "Dynamic Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients," International Journal of Multiphase Flow, Vol.36, pp.491-502.
87. Z.B. Yan, K.C. Toh, F. Duan, T.N. Wong, K.F. Choo, P.K. Chan, and Y.S. Chua, 2010, "Experimental Study of Impingement Spray Cooling for High Power Devices," Applied Thermal Engineering, Vol.30, pp.1225-1230.
88. P.E. Santangelo, 2010, "Characterization of High-Pressure Water-Mist Sprays: Experimental Analysis of Droplet Size and Dispersion," Experimental Thermal and Fluid Science, Vol.34, pp.1353-1366.
89. T. Kristyadi, V. Depredurand, G. Castanet, F. Lemoine, S.S. Sazhin, A. Elwardany, E.M. Sazhina, and M.R. Heikal, 2010, "Monodisperse Monocomponent Fuel Droplet Heating and Evaporation," Fuel, Vol.89, pp.3995-4001.
90. J.Tillwick, V.Uhlenwinkel, and K. Bauckhage, 1999, "Analysis of the spray forming process using backscattering phase-Doppler anemometry," Int. J. of Heat and Fluid Flow, Vol. 20, pp.530-537.
91. G. W. Liu, Y. S. Morsi , and B. R. Clayton, 2000, "Characterisation of the spray cooling heat transfer involved in a high pressure die casting process," Int. J. Therm. Sci., Vol. 39, pp.582-591.
92. F. Puschmann, and E. Specht, 2004, "Transient measurement of heat transfer in metal quenching with atomized sprays," Experimental Thermal and Fluid Science, Vol. 28, pp.607-615.
93. K.H. Lee, and C.H. Lee, 2007, "Characterization of the flow field and stratification effects of fuel spray in a visualization engine using DPIV and entropy analysis," Experimental Thermal and Fluid Science, Vol. 31, pp. 579-592
94. T.K. Julian, S.S. John, and W.Adam, 2007, "A digital image analysis technique for quantitative characterisation of high-speed sprays," J. of Optics and Lasers in Engineering, Vol. 45, pp. 106-115.
95. Y. M. Lie, J. H. Ke, W.R. Chang, T.C. Cheng, and T.F. Lin, 2007, "Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip," Int. J. of Heat and Mass Transfer, Vol. 50, pp.3862-3876.
96. Y.R. Jeng, C.C. Su, G.H. Feng, and Y.Y. Peng, 2007, "An investigation into a piezoelectrically actuated nebulizer with µEDM-made micronozzle array," Experimental Thermal and Fluid Science, Vol. 31, pp. 1147-1156.
97. P. R. Bevington, 1969, "Data reduction and error analysis for the physical sciences", McGraw-Hill, New York, pp. 1-6.
98. C.S.C Qiang and M.Susan, 2003, "The Effect of Dissolving Salts in Water Spray Used for Quenching a Hot Surface: Part 1-Boiling of Single Droplets," Journal of Heat Transfer – Transactions of the ASME, Vol. 125, pp. 326-332.
99. J.D. Bernardin ,and I. Mudawar , 2007, "Transition Boiling Heat Transfer of Droplet Streams and Sprays," J. of Heat Transfer, Vol. 129, pp. 1605-1610.
100. Z. Yan, R. Zhao, F. Duan, T.N.Wong, K.C. Toh, K.F. Choo ,P.K. Chan, and Y.S. Chua, 2011,"Two Phase Flow, Phase Change and Numerical Modeling," ISBN:978-953-307-584-6.
101. F.P. Incropera, D.P. Dewitt, A.S. Lavine, 2007, "Fundamentals of Heat and Mass Transfer," 6th edition ,John Wiley & Sons
102. Jungho Kim, 2007, " Spray cooling heat transfer: The state of the art," Int. J. of Heat and Fluid Flow, Vol. 28, pp. 753-767.
103. J.L. Xie, Z.W. Gan, T.N. Wong, F. Duan, S.C.M. Yu, and Y.H. Wu, 2014, "Thermal effects on a pressure swirl nozzle in spray cooling," Int. J. of Heat and Mass Transfer, Vol. 73, pp. 130-140.
104. S.V. Minov, D. Nuyttens, J. Vangeyte, J.G. Pieters, and F.Cointault, 2013, "Spray nozzle characterization using high speed imaging techniques," Precision agriculture ’13 ,pp. 569-576.
105. T. Kawaguchi ,T. Kobayashi ,and M. Maeda, 2002, "Measurement of spray flow by an improved Interferometric Laser Imaging Droplet Sizing (ILIDS) system," Laser Techniques for Fluid Mechanics pp. 209-220.
106. Y. L. Huang, and S.H. Chang , 2010 , "Micro-Droplets Atomizer Using PZT Ring Actuator," J. of Mechanics, Vol. 26, No.3
107. S.N. Heffington, W.Z. Black ,and A. Glezer ,2000, "Vibration-induced droplet cooling of microelectronic components," IEEE THERM 2000 conference
108. S.N. Heffington , and A. Glezer ,2004, "Two-phase thermal management using a small-scale, heat transfer cell based on vibration-induced droplet atomization," IEEE THERM 2004 conference
109. H.Y. Wang, C. Huang, C.T Chen, 2012, "Specific design and implementation of a piezoelectric droplet actuator for evaporative cooling of free space," IEEE NEMS 2012 conference
110. C.T. Chen, and H.Y. Wang , 2015, "Droplet generation and evaporative cooling using micro piezoelectric actuators with ring-surrounded circular nozzles," Microsystem Technologies, Vol. 21, pp. 2067-2075
111. K.A. Ramisetty, A.B. Pandit, P.R. Gogate, 2013, "Investigations into ultrasound induced atomization," Ultrasonics Sonochemistry , Vol. 20, pp. 254-264.
112. 117. Y.R. Jenga, P.Y. Tua, G.H. Fenga, C.C Sua, and Y.Y. Peng, 2007,"PZT bimorph actuated atomizer based on higher order harmonic resonance and reduced operating pressure," Sensors and Actuators A: Physical, Vol. 136, pp. 434-440
113. X. Zhang, Z. Wen, R. Dou, G. Zhou , and F. Zhang, 2014,"Experimental study of the air-atomized spray cooling of high-temperature metal," Applied Thermal Engineering, Vol. 71, pp. 43-55
114. J.L. Xie, Y.B. Tana, F. Duana, K. Ranjitha, T.N. Wong, K.C. Toh, K.F. Choo, and P.K. Chan, 2013, "Study of heat transfer enhancement for structured surfaces in spray cooling," Applied Thermal Engineering, Vol. 59, pp. 464-472.
115. M. Aamir, L. Qiang, Z. Xun, W. Hong, and M. Zubair, 2014, "Ultra Fast Spray Cooling and Critical Droplet Diameter Estimation from Cooling Rate," Journal of Power and Energy Engineering,Vol.2, pp. 259-270.
116. J.X. Wang, Y.Z. Li, H.S. Zhang, S.N. Wang, Y.F. Mao, and Y.N. Zhang, 2015, "Investigation of a spray cooling system with two nozzles for space application, " Applied Thermal Engineering, Vol. 89, pp. 115-124.
117. G.E. Soriano, T. Zhang, and Jorge L. Alvarado, 2014, "Study of the effects of single and multiple periodic droplet impingements on liquid film heat transfer," Int. J. of Heat and Mass Transfer, Vol. 77, pp. 449-463.
118. S. Jiang, and V. K. Dhir, 2004 , "Spray cooling in a closed system with different fractions of non-condensibles in the environment ," Int. J. of Heat and Mass Transfer, Vol. 47, pp. 5391-5406.
119. E.M. Galvána, R. Antóna, J.C. Ramosa, and R.Khodabandehb, 2013, "Effect of the spray cone angle in the spray cooling with R134a," Experimental Thermal and Fluid Science, Vol. 50, pp. 127-138.
120. S.S. Hsieh, and S.Y. Luo, 2016, "Droplet impact dynamics and transient heat transfer of a micro spray system for power electronics devices, " Int. J. of Heat and Mass Transfer, Vol. 92, pp. 190-205.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code