Responsive image
博碩士論文 etd-0731116-092137 詳細資訊
Title page for etd-0731116-092137
論文名稱
Title
應用於多重輸入/輸出系統之懸浮變壓器式微型功率分波器
Suspended Transformer-based Micro Power Divider for Multi-input Multi-output System Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-20
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
MIMO、功率分波器、微機電系統製程、面型微加工技術、銅電鍍製程
surface micromachining, NEMS, power divider, MIMO, copper electroplating fabrication processes
統計
Statistics
本論文已被瀏覽 5713 次,被下載 25
The thesis/dissertation has been browsed 5713 times, has been downloaded 25 times.
中文摘要
隨著物/車聯網系統市場的蓬勃發展,未來無線通訊網路系統必須具備更高的傳輸速度、更遠的傳輸距離以及更準確之資料準確率,使得多重輸入/輸出(Multi-input Multi-output ; MIMO)之技術因應而生;然而在MIMO接收機系統架構中,複數的接收天線需要相對應數量之主被動電路,導致功能相同之分波器元件重複出現,造成系統架構需佔用更多面積。為了改善上述缺點,本論文運用微機電系統製程之面型微加工技術設計開發多重功率分波器,整合MIMO接收機系統架構所需之功能相同分波器元件,以符合現今無線通訊網路產品輕薄短小之需求。
為了整合功率分波器並使其擁有能運用於產品之特性,本論文使用高頻結構電磁模擬軟體(ANSYS HFSS)與先進設計系統(Agilent ADS)進行模擬設計與分析,對元件之結構設計使用以下三種方法:(i)結構為兩個中央抽頭式功率分波器互相纏繞以減少元件面積;(ii)藉由部分結構懸浮之設計以減少元件與基板間產生之寄生電容而造成的能量損失;(iii)使用環氧樹脂負型光阻(SU-8 5)作為MIM電容進行端埠匹配結構之介電層。本論文所設計開發之功率分波器元件結構包含下層訊號傳導層、支撐銅柱與介電層、上層訊號傳導層共三層堆疊而成,製程步驟包含六次薄膜沉積、五次黃光微影、三次銅電鍍製程以及四次元件蝕刻釋放結構。
本論文所設計之功率分波器其整體藉由網路分析儀量測元件於10 MHz至5.0 GHz之高頻特性,第一階段所完成之元件,其量測特性在中心頻率2.4 GHz時,兩輸出端埠之相位差離標準值180°分別相差23.89°與-47.63°;而在反射損耗部分,兩輸入端埠之反射損耗則分別為-7.53與-9.8 dB,四輸出端埠之反射損耗分別-3.42、-5.28、-2.58及-5.12 dB;四埠輸出之插入損耗則分別為-19.67、-17.58、-16.89與-14.25 dB。第二階段針對製程精準度及穩定度進行改善,所完成之元件經量測結果顯示,兩輸出端埠之相位差離標準值180°分別僅相差-3.14°與-4.14°;兩輸入端埠之反射損耗則分別為-9.45與-14.38 dB,與第一階段特性相比,輸入反射損耗分別提升25%與46%,而在輸出反射損耗,四輸出端埠之反射損耗分別為-10.29、-11.22、-9.62及-11.21 dB,亦改善200%、112%、272%、及118%;另外四埠輸出之插入損耗則分別為-12.98、-9.39、-10.67與-9.17 dB,亦改善34%~46%。
Abstract
Since the Internet of Things (IoT) and Internet of Vehicle (IoV) markets are increasing rapidly, the wireless communication system with farther transmission distance, higher data rate and information accuracy are developed for matching the requirements of the multi-input multi-output (MIMO) techniques. However, there are similar passive and active devices with the same functions consume extra area in the MIMO receiver system. In order to improve the above drawback, this thesis designed and developed a multiplex power divider replaced two traditional power dividers utilizing the surface micromachining process, and diminish the dimensions of divider for the needs of wireless communications network products.
To optimum the performances of power divider, this thesis uses the commercial software ANSYS HFSS and Agilent ADS to analyze and extract high-frequency characteristics. The main structures in this thesis including: (i) Employ two central tapped power divider to reduce the area; (ii) Utilize suspended structure to reduce the insertion loss caused by parasitic capacitance between device and substrate; (iii) Use epoxy negative resist (SU-8 5) as a MIM capacitor dielectric layer to enhance the returns. This power divider constructed of bottom electrode, supporting posts and top electrode. The main fabrication processes including six thin-film depositions, five graphic definitions of photolithography, three copper electroplating and four etching processes.
The multiplex power divider with 2.4 GHz operating frequency and measured from 10 MHz to 5.0 GHz by network analyzer. There were two generations of the power divider in this thesis. Compare with the standard phase difference (180°), the first-generation exhibited 23.89° and -47.63°, whereas -3.14° and -4.14° in second-generation, which present well balanced output phase difference characteristics. The input return losses enhanced from -7.53 and -9.8 dB to -9.45 and -14.38 dB, which improved 46% with early. The initial generation showed the output return losses of -3.42、-5.28、-2.58 and -5.12 dB, and -10.29、-11.22、-9.62 and -11.21 dB in subsequent generation, all the output return loss characteristics improved above than 118%. Moreover, the insertion losses demonstrate -19.67 -17.58、-16.89 and -14.25 dB in previous generation, and -12.98、-9.39、-10.67 and -9.17 dB in the later generation, which enhanced more than 34%.
目次 Table of Contents
論文審定書 i
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 實驗方法及論文架構 4
第二章 功率分波器理論與材料特性簡介 5
2.1 分波器 5
2.1.1 T形接面分波器 5
2.1.2 威爾京生分波器 6
2.1.3 鼠徑分合波器 9
2.2 變壓器 11
2.3 元件金屬材料之特性 12
2.4 元件介電層之材料特性 14
第三章 懸浮變壓器式微型功率分波器模擬設計與製作 18
3.1 懸浮變壓器式微型功率分波器之特性指標 19
3.2 懸浮變壓器式微型功率分波器高頻特性模擬 20
3.3 懸浮變壓器式微型功率分波器之光罩佈局設計 25
3.4 懸浮變壓器式微型功率分波器之製程整合 26
3.5 懸浮變壓器式微型功率分波器之製程步驟及參數 27
第四章 實驗結果與討論 39
4.1懸浮變壓器式微型功率分波器關鍵製程技術之開發 39
4.2懸浮變壓器式微型功率分波器之高頻特性量測 43
4.2.1 製程改善前之量測結果與討論 45
4.2.2 製程改善後之量測結果與討論 48
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
參考文獻 56
參考文獻 References
[1] M. Behera, V. Kratyuk, S. K. De, N. R. Aluru, Y. Hu and K. Mayaram, “Accurate Simulation of RF MEMS VCO Performance Including Phase Noise,” J. Microelectromech. Syst., vol. 14, pp. 313-325 (2005).
[2] L. A. Shaik, B. Pramanick, J. Y. Siddiqui, “Design of a Reconfigurable Dual State Planar Filter Using SRRs and MEMS on a Coplanar Waveguide,” Asia Pacif. Microw. Conf., Nanjing, China, pp. 1-3 (2015).
[3] U. Shah, E. Decrossas, C. J. Kubiak, T. Reck, G. Chattopadhyay, I. Mehdi, J. Oberhammer, “Submillimeter-Wave 3.3-bit RF MEMS Phase Shifter Integrated in Micromachined Waveguide,” IEEE Trans. Terahertz. Sci. Technol., vol. 99, pp. 1-10 (2016).
[4] K. Y. Chan, R. Ramer, and R. R. mansour, “Novel miniaturized RF MEMS staircase switch matrix,” IEEE Microw. Wireless Compon.. vol. 22, pp. 117-119 (2012).
[5] A. Zohur, H. Mopidevi, D. Rodrigo, M. Unlu, L. Jofre, and B. A. Cetiner, “RF MEMS reconfigurable two-band antenna,” IEEE Antennas Wireless Propag., vol. 12, pp. 72-75 (2013).
[6] D. M. Pozar, “Microwave Engineering, 4th ed” John Wiley & Sons, Inc., USA, 2011, pp. 324-331.
[7] 張世賢,在考慮衰減長數存在下,相位反轉Rat-Race分合波器之設計,國立交通大學電機學院電信學程系碩士論文,2007。
[8] J. M. Dewdney and J. Wang, “Characterization the Microwave Properties of SU-8 Based on Microstrip Ring Resonator,” Wireless and Microw. Tech. conf., Clearwater, USA, pp. 1-5 (2009).
[9] MicroChem Corp. Available online: http://www.microchem.com/pdf/SU8_2-25.pdf (accessed on 3 August 2016)
[10] MicroChem Corp. Available online: http://www.microchem.com/pdf/SU-82000DataSheet2000_5thru2015Ver4.pdf (accessed on 3 August 2016)
[11] 魏祖強,平面型變壓器為基礎之積體化被動元件設計與模型化研究,國立中山大學電機工程系碩士論文,2009。
[12] A. Ghannam, C. Viallon, D. Bourrier, T. Parra, “Dielectric Microwave Characterization of the SU-8 Thick Resin Used in an Above IC Process,” European Microw. Conf., Rome, European, pp. 1041-1044 (2009).
[13] F. D. Mbairi and H. Hesselbom, “High Frequency Design and Characterization of SU-8 based Conductor Backed Coplanar Waveguide Transmission Lines,” Proc. Int. Symp. Adv. Packaging Mater: Processes, Properties and Interfaces. pp. 243-248 (2005).
[14] C. H. Huang, T. C. Wei, T. S. Horng, J. Y. Li, C. C. Chen, C. C. Wang, C. T. Chiu, and C. P. Hung, “Design and modeling of planar transformer-based silicon integrated passive devices for wireless applications,” IEEE Radio Frequency Integrated Circuits Symp, Boston, USA, pp. 167-170 (2009).
[15] R. F. Ye, T. S. Horng, and J. M. Wu, “Highly sensitive and low power injection-locked FSK receiver for short-range wireless applications,” 2012 IEEE Radio Frequency Integrated Circuits Symp, Montreal, Canada, pp. 377-380 (2012).
[16] D.M. Pozar, “Microwave and RF Design of Wireless Systems,” John Wiley& Sons, Inc, USA, 2000.
[17] Tai-Ran Hsu, "MEMS AND MICROSYSTEMS, 2nd edition," John Wiley & Sons, Inc, USA, 2008.
[18] S. C. Tseng, C. C. Meng, C. H. Chang, S. H. Chang, and G. W. Huang, “A Silicon Monolithic Phase-Inverter Rat-Race Coupler Using Spiral Coplanar Striplines and Its Application in a Broadband Gilbert Mixer,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 8 (2008).
[19] 鄧羽廷,運用微機電技術開發具懸浮結構之巴倫器,國立中山大學電機工程學系碩士論文,2011。
[20] 蔡尚谷,運用微機電系統技術開發可應用於K頻帶之懸浮式共平面波導濾波器,國立中山大學電機工程學系碩士論文,2013。
[21] 許文宏,運用微機電系統技術開發四相位微型耦合器,國立中山大學電機工程學系碩士論文,2015。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code