Responsive image
博碩士論文 etd-0731116-092257 詳細資訊
Title page for etd-0731116-092257
論文名稱
Title
高靈敏度彎曲平板波四氫大麻酚感測元件之研發
Development of High-sensitivity Flexural Plate-wave Based Tetrahydrocannabinol Biosensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-20
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
四氫大麻酚、插入損耗、扇形雙極式指叉電極、彎曲平板波
flexural plate-wave, Tetrahydrocannabinol, insertion loss, double electrode interdigital transducers
統計
Statistics
本論文已被瀏覽 5738 次,被下載 61
The thesis/dissertation has been browsed 5738 times, has been downloaded 61 times.
中文摘要
根據聯合國於2016年公布的世界毒品報告顯示,在2014年每20個成年人中就有1個人(亦即15至64歲的人中有2.5億人)使用過至少一種毒品,其中又以大麻為使用最氾濫的毒品。大麻中的主要化學成分為四氫大麻酚(Tetrahydrocannabinol, THC),吸食者除了會產生幻覺造成公共安全的問題外,亦會對自身健康造成影響。為了提供警方快速取締吸食毒品者並加強防制毒品之濫用,本論文運用微機電技術與自我組裝單分子層技術,開發一種可檢測人體尿液中四氫大麻酚濃度之彎曲平板波(Flexural Plate-wave, FPW)生物感測器,可應用於大麻之快速篩檢。
為了改善傳統彎曲平板波元件之高插入損耗與低質量感測靈敏度的缺點,本論文導入聚焦式扇形雙極指叉轉換器(Inter-digital Transducers, IDTs)與聚焦式反射閘極之設計;另外,本研究利用兩階段非等向性濕式蝕刻來進行背面矽腔體之製作,以精準控制彎曲平板波元件感測薄膜的厚度並改善製程良率。本論文所設計之高靈敏度彎曲平板波四氫大麻酚感測器,其主要製程包含七次薄膜沉積與五次黃光微影製程。
根據量測結果顯示,在最佳化製程條件下,本論文之彎曲平板波元件具有低插入損耗(-40.24 dB)、高質量感測靈敏度(118.95 cm2/g)、高質量感測線性度(R-square=0.95)與高之製程良率(66.67%);另一方面,四氫大麻酚彎曲平板波生物感測器於五種不同濃度之四氫大麻酚(5、10、20、40、80 ng/ml)下進行量測,其生物偵測極限為5 ng/ml、生物感測線性度R-square為0.97,未來可望進一步應用於大麻之快速篩檢。
Abstract
According to the World Drugs Report 2016 released by the United Nations, It is estimated that 1 in 20 adults, or a quarter of a billion people between the ages of 15 and 64 years, used at least one drug in 2014. Cannabis remains the most commonly used drug at the global level, with an estimated 183 million people having used the drug. The main psychoactive part of cannabis is tetrahydrocannabinol (THC). Cannabis addicts often hallucinate to cause public safety issues. Cannabis will also harm their own health. In order to allow the polices to banned drug abusers, this thesis aims to develop a flexural plate-wave (FPW) based biosensor for rapidly detection of THC concentration in human urine by integrating microelectromechanical systems (MEMS) and self-assembly monolayer (SAM) technologies.
To improve the high insertion loss and increase the sensitivity, this paper proposed a FPW transducer with focus-type double electrode interdigital transducers and groove-type reflective grating structure (RGS). Furthermore, to accurately control the thickness of the silicon thin-plate and substantially improve the fabrication yield of FPW transducers, a two-step anisotropic wet etching process was also developed. The manufacturing technologies adopted in this dissertation were MEMS and SAM technologies. The main fabrication processes included seven thin films deposition and five photolithography.
According to the experimental results, the proposed FPW transducer demonstrated a low insertion loss (-40.24 dB), high mass sensitivity (118.95 cm2/g), high sensing linearity (0.95). Furthermore, the proposed FPW-based THC biosensor demonstrated a very low detection limit (5 ng/mL) and high mass-sensing linearity (0.97).
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機與論文架構 4
1.3文獻回顧 4
1.3.1生物感測器簡介及比較 5
1.3.2 聲波感測器種類與比較 8
第二章 FPW元件材料分析與理論 16
2.1 壓電效應簡介與壓電薄膜選擇 16
2.1.1 壓電效應 16
2.1.2 壓電薄膜選擇 17
2.1.3氧化鋅壓電薄膜晶格結構與特性 18
2.2氧化鋅壓電薄膜沉積方法與特性分析 20
2.2.1 氧化鋅壓電薄膜沉積方法 20
2.2.2 氧化鋅壓電薄膜沉積原理 20
2.2.3反應性射頻磁控濺鍍原理 21
2.3 X光繞射(X-Ray Diffraction, XRD)分析 23
2.4 金屬指叉轉換器之等效電路分析 25
2.5 反射閘極結構理論 29
2.5.1 反射閘極與IDT之間距離之關係 30
2.5.2 反射閘極週期 32
2.5.3反射閘極對數之原理 32
2.6 FPW質量感測之理論推導 32
2.7 FPW生物感測元件 33
2.7.1自我組裝單分子層 33
2.7.2 胱胺酸-戊二醛鍵結法 33
第三章 聚焦式雙電極結構之FPW元件設計與製作 35
3.1 聚焦式雙電極結構之FPW元件設計 35
3.2 聚焦式雙電極結構之FPW元件製作 39
3.3 生物感測方法及步驟 46
第四章 實驗結果與討論 50
4.1 氧化鋅壓電薄膜之材料特性 50
4.2 FPW元件特性量測結果與分析 52
4.2.1 反射閘極結構對數對FPW元件特性之影響 52
4.2.3 矽基板之KOH蝕刻時間對FPW元件中心頻率的影響 54
4-3 聚焦式雙電極結構之FPW固態質量感測器特性分析 55
4.4 FPW元件生物質量感測結果與分析 57
第五章 結論與未來展望 58
5.1 結論 58
5.2 未來展望 59
參考文獻 60
參考文獻 References
[1] 微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心,2003。
[2] A. A. M. Ralib, A. N. Nordin and U. Hashim, "Finite element modeling of SAW resonator in CMOS technology for single and double interdigitated electrode (IDT) structure." Micro and Nanoelectronics (RSM), 2013 IEEE Regional Symposium on. IEEE, (2013).
[3] C. Clark Jr. and C. Lyons,“Electrode systems for continuous monitoring in cardiova scular surgery.” Ann. NY. Acad. Sci., vol.102, pp. 29-45 (1962).
[4] M. Pohanka and P. Skladal, “Electrochemical biosensors – principles and applications.” J. Appl. Biomed, vol. 6, pp. 57-64 (2008).
[5] P. Bergveld, “Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements”IEEE Trans. Bio-Medical Engineering, vol. 17, pp. 70-71 (1970).
[6] I. Voiculescu, A. N. Nordin, “Acoustic wave based MEMS devices for biosensing applications,” Biosensors and Bioelectronics, vol. 33, pp. 1-9 (2012).
[7] M. A. Cooper, “Optical biosensors in drug discovery,”Nat. Rev. Drug Discov., vol . 1, pp. 515-28 (2002).
[8] 高士軒、翁艾慧,臨床醫療生物感測器發展及技術應用,生物感測器專刊第61卷第5期,2014
[9] Andle, J., Haskell, R. and Chap, M. "Electrically isolated thickness shear mode liquid phase sensor for high pressure environments." 2008 IEEE Ultrasonics Symposium. IEEE, (2008).

[10] D.W. Galipeau, P.R. Story, K.A. Vetelino, and R.D. Mileham, “Surface acoustic wave microsensors and applications,” Smart Materials and Structures, vol. 6, pp. 658-667 (1997).
[11] J. W. Gardner, V. K. Varadan, and O.O. Awadelkarim, “Microsensors MEMS and Smart Devices,” John Wiely & Sons, Inc., New York (2001).
[12] 余嘉銘,壓電彎曲平板波生物感測器,國立中正大學電機工程研究所碩士論文 (2003)。
[13] M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics. vol. 36, pp. 7-14 (1998).
[14] M. E. Motamedi and R. M. White, “Acoustic Sensor in Semiconductor Sensor,” John Wiely & Sons, Inc., New York (1994).
[15] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sens. Act. B: Chem., vol. 132, pp. 340-348 (2008).
[16] I.-Y. Huang, M.-C. Lee, C.-H Hsu, and C.-C. Wang, “Development of a flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing microsystem,” Sens. Act. B: Chem., vol. 162, pp. 184-192 (2012).
[17] D. S. Ballantine and D. Stephen, “Acoustic Wave Sensor: Theory, Design, and Physico-chemical Applications,” San Diego, Academic Press, Inc. (1997).
[18] M. I. Rocha-Gaso, C. M. Iborra, A. M. Baides, and A. A. Vives, “Surface generated acoustic wave biosensors for the detection ofpathogens,” Sensors, vol. 9, pp. 5740-5769 (2009).
[19] R.W. Cernosek, “An overview of acoustic wave devices for chemical & biological sensing, biological detection, and materials characterization,” Solid-State Sensor Lecture, Auburn University, Auburn, AL, (2002).
[20] R.H. Tancrell and M.G. Holland, “Acoustic surface wave filters,” Proceedings of the IEEE, pp. 393-409, (1971).
[21] S. J. Kang, Y. H. Joung, D. H. Chang, and K. W. Kim, “Piezoelectric and optical properties of ZnO thin films depositedusing various O2/(Ar+O2) gas ratios,”J. Mater. Sci:Mater. Electron., vol. 18, pp. 647-653 (2007).
[22] 魏中聖,蕭俊卿,沈弘俊,“射頻濺鍍功率對氧化鋅薄膜機械性質之影響,”國立台灣大學奈米機電中心,國立台灣大學應用力學研究所,真空科技,二十卷第一期,2007。
[23] A. Ismail and M.J. Abdullah, “The structural and optical properties of ZnO thinfilms prepared at different RF sputtering power,”J. King Saud University-Sci., vol. 25, pp. 209-215, (2013).
[24] 歐天凡,沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響,國立中山大學電機工程研究所碩士論文 ,2004。
[25] Hong Xiao原著,羅正忠、張鼎張譯,「半導體製程技術導論」,學銘圖書。
[26] 汪建民主編,材料分析,中國材料科學學會。
[27] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of equivalent circuit model,” IEEE Trans Microw. Theory Tech., vol. 17, pp. 856-864 (1969).
[28] S.G. Joshi, B.D. Zaitsev, and I. E. Kuznetsova, “Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr., vol. 49, pp. 1730-1734 (2000).
[29] C.-Y Lin, I.-Y. Huang, and J.-W. Lan, “Improvement of insertion loss and quality factor of flexural plate-wave based alpha-fetoprotein biosensor using groove-type reflective grating structures,”J. Micro/Nanolith. MEMS MOEMS, vol. 12, pp. 013017-1~8 (2013).
[30] I.-Y. Huang, C.-Y. Lin, and J.-W. Lan, “Improving thin film ZnO SAW device insertion loss by grooved reflective grating structure,”J. Micro/Nanolith. MEMS MOEMS, vol. 12, pp. 013019-1~9 (2013).
[31] 林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學研究所碩士論文,2003。
[32] W. H. Haydl, B. Dischler, and P. Hiesinger, “Multimode SAW resonators-a method to study the optimum resonator design,”Proc. IEEE Ultrason. Symp., pp. 287-296 (1976).
[33] 陳建霖,具聚焦式反射閘極結構之彎曲平板波元件開發,國立中山大學電機工程學系碩士論文 ,2013。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code