Responsive image
博碩士論文 etd-0731116-174032 詳細資訊
Title page for etd-0731116-174032
論文名稱
Title
太陽光廣角集光模組設計與分析
Ultra-wide view of light guide module for solar concentration
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-11
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
3D printer、自由曲面準直透鏡、廣角收光、複合拋物面鏡、太陽能集光器
Solar concentrator, Free-form collimator, Compound parabolic concentrator (CPC), Ultra-wide view, 3D printer
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
一般的太陽能集光器,其可接收角(Acceptance angle, θmax)通常都不大(θmax ≦±1°),因此需依賴追日系統提高集光器的對準公差,同時也增加發電系統的成本。本研究利用幾何光學方式,設計出具廣角收光功能之光能導引集光模組(Ultra-wide view of concentrator, UWC),進而匯聚一高日照強度光源,本模組無須倚靠高精度追日系統即可達成偏射光導引→準直→匯聚之功效。研究中透過設計之複合拋物面鏡(Compound parabolic concentrator, CPC)與自由曲面準直透鏡(Free-form collimator, FC)構成一廣角收光聚光單元(Ultra-wide view of concentrating unit, UWCU),可經由陣列方式整合多顆單元形成次模組,將其放置於匹配之拋物面鏡主模組上方,形成本文之集光模組。分別進行上述三種元件的探討及性能確認,包括設計另一種非對稱多邊形複合拋物曲面(Asymmetrical polygon compound parabolic curve, ACPC)以增加陣列後之填充率、設計一優化之橢型準直透鏡以增加準直度,最後亦設計單、雙反射式拋物面鏡主模組以比較何者匹配次模組,最後對於整體模組的光導引及匯聚功能進行分析與模擬。其中,透過3D printer技術進行治具製作,以及使用精密機械加工元件。模擬結果顯示,在各式聚光單元及拋物面光機主模組中,選擇陣列ACPC的次模組並搭配優化後之單反射式主模組來構成本文最佳的集光模組,UWCU可由CPC將偏射光導引 (θmax≦±10°),再透過FC準直化 (光半強角<6°),UWCU光效率於θmax≦± 10°下可維持50~80%。具廣角收光功能之光能導引集光模組(Dia. 100 mm),可接收角度範圍θmax≦±10°。在平均日照強度1 kW/m2環境下,並在無須安裝追日系統下,一天的中午11:20至12:40有最佳效能。接收面(~10*10 mm2)光通量最大可輸出3.97W (效率70%)。
Abstract
The general solar concentrators are designed with a small acceptance angles (θmax≦±1°). Therefore, these concentrators would be set up on a solar tracker to improve the alignment tolerance, but they also increase the cost. In this paper, the ultra-wide view concentrator (UWC) is designed for collecting solar light rays in various incident angles, and then focuses the solar light on a focal plane without precise solar tracking system. The UWC that comprises a parabolic reflector, compound parabolic concentrators (CPCs) and free-form collimators (FCs). In addition, CPC and FC are integrated to form the ultra-wide view of concentrating unit (UWCU). The UWCUs could array to become the secondary module, and put them onto the parabolic reflector primary module to become the UWC finally. Then the performances and analysis of three optical components and UWC were confirmed respectively, including design another shape of CPC named ACPC to increase the fill rate, design a new type of FC named optimized FC to increase the collimation, and design two types of parabolic reflector named Single parabolic reflector and Dual parabolic reflector to compare with them which is suitable for assembling to UWCUs. Finally, the prototype was fabricated by 3D printer and Precision Machining. Simulation results show that in all kinds of secondary and primary module, choose ACPC to array onto the Single parabolic reflector to become the best UWC. The results of UWCU show that the optical efficiency of 50~80% is under acceptance angle ≦± 10°. The UWC was achieved under acceptance angle in the range of θmax≦±10°. Finally, when under 1 kW/m2 sunlight, this UWC would have the best performance between 11:20~12:40 a day without solar tracking system, and the UWC would receive 3.97W (the efficiency is 70%) on the plane receiver.
目次 Table of Contents
目錄
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機與目的 2
1.4 文獻回顧 3
1.5 本文架構 13
第二章 光學理論基礎 14
2.1 幾何光學理論 14
2.1.1 點光源發光 14
2.1.2 光線基礎概念 15
2.1.3 反射原理現象 15
2.1.4 折射原理現象 17
2.1.5 全反射原理現象 18
2.2 照明單位定義 19
2.2.1 光通量 20
2.2.2 照度 20
2.2.3 光強度 20
2.2.4 光亮度 21
2.3 光源模擬設定 22
第三章 研究方法與步驟 23
3.1 研究流程 23
3.2 複合拋物面鏡 25
3.2.1 複合拋物面鏡設計步驟方法 25
3.2.2 將原型改良為多邊形複合拋物面鏡 28
3.3 自由曲面準直透鏡 30
3.3.1 自由曲面準直透鏡設計步驟方法 30
3.3.2 改良傳統自由曲面準直透鏡 34
3.3.3 設計一優化的新橢型自由曲面拋物面鏡 35
3.4 廣角收光聚光單元 37
3.4.1 CPC與自由曲面準直透鏡組合關係 37
3.4.2 各式廣角收光聚光單元 38
3.5 拋物面鏡主模組 40
3.5.1 單反射式拋物面鏡主模組 40
3.5.2 雙反射式拋物面鏡主模組 41
3.6 廣角收光之光能導引集光模組 41
3.6.1 光能導引集光模組之組成方式 41
3.6.2 各式UWCU之陣列方式 42
3.7 元件實體及量測架設 46
第四章 結果與討論 50
4.1 拋物面鏡主模組模擬與分析 50
4.1.1 拋物面鏡主模組模擬與選擇 50
4.1.2 單反射式拋物面鏡主模組模擬 51
4.1.3 雙反射式拋物面鏡主模組模擬 52
4.2 複合拋物面鏡之模擬與分析 54
4.2.1 複合拋物面鏡之幾何參數分析 54
4.2.2 複合拋物面鏡之建構方式與角度模擬 55
4.2.3 對稱與多邊形CPC之模擬 57
4.3 廣角收光聚光單元之模擬與分析 59
4.3.1 廣角收光聚光單元之參數分析 59
4.3.2 兼顧高準直度且最大填充率之廣角聚收光聚光單元參數分析 60
4.3.3 分析傳統式、改良式及優化式之準直透鏡差異 61
4.3.4 模擬各式規格之廣角收光聚光單元之效率與角度關係 64
4.4 廣角收光功能之光能導引集光模組模擬與分析 72
4.4.1 各種規格之集光模組的模擬比較 72
4.4.2 優化效率較高的兩組單反射式集光模組模擬 92
4.4.3 優化效率最高之Version G模組成為Version I模組 93
4.4.4 將最佳之兩模組代入實際一天平均照度曲線模擬 94
4.5 實驗架設與量測 96
4.5.1 裸光源量測實驗 96
4.5.2 廣角收光聚光單元量測實驗 97
4.5.3 雙反射式集光模組量測實驗 99
4.5.4 單反射式集光模組量測實驗 101
第五章 結論與未來展望 103
5.1結論 103
5.2未來展望 104
參考文獻 105
附件一 110
附件二 112
附件三 114
參考文獻 References
[1] Solar Fuels and Artificial Photosynthesis. Royal Society of Chemistry 2012.http://www.rsc.org/ScienceAndTechnology/Policy/Documents/solar-fuels.asp, 11 March 2013.
[2] Solarenergy-WIKI,https://zh.wikipedia.org/wiki/太阳能, June 11 2016.
[3] Sunlight-WIKI,https://zh.wikipedia.org/wiki/太阳光, June 18 2016.
[4] Chapter 8 – Measurement of sunshine duration . CIMO Guide. World Meteorological Organization, December 01 2008.
[5] Working Group I: The Scientific Basis, Climate Change 2001.
[6] 工業技術研究院-光連雙月刊 March, NO.92, 2011.
[7] Natural Forcing of the Climate System. Intergovernmental Panel on Climate Change, September 29 2007.
[8] Smil (2006), p. 12
[9] Renewable and Appropriate Energy Laboratory: 12. [2012-12-06].
[10] Exergy (available energy) Flow Charts 2.7 YJ solar energy each year for two billion years vs. 1.4 YJ non-renewable resources available once.
[11] Philibert, Cédric. The Present and Future use of Solar Thermal Energy as a Primary Source of Energy. IEA. 2005.
[12] Hsin-Yu Lin, “International Investment Trend of Photovoltaics,"National Sun Yat-sen University, Taiwan, 2011, p.46-47 .
[13] Ji-Fan Chen, “Research on Optical Design for the Solar Concentrated System with Fresnel lens Structures," Hualien, National Dong Hwa University, Taiwan, 2013.

[14] C.M Wang, H Huang, J.W Pan, et al. Single Stage Transmission Type Broadband Solar Concentrator [J]. Optics Express(S1094-4087),2010.
[15] Wiemer M, Sabnis V, Yuen H. 43.5% Efficient Lattice Matched Solar Cells [J]. Processing of SPIE(S0277-786X),2011.
[16] J.W Pan, J.Y Huang, C.M Wang, et al. High Concentration and Homogenized Fresnel Lens without Secondary Optics Element [J]. Optics Communications(S0030-4018),2011.
[17] 淡江大學能源與光電材料研究中心, “太陽熱能,” 2010.
[18] 朱光馨,中科院-“太陽聚熱技術及應用”,化學研究所,2013.
[19] 張文曲, “台南地區漫射量監測分析,” 經濟部能源局能源知識庫, 12. 24 2011.
[20] David J. Sian Lewis, http://www.plataformaenergetica.org/content/716.
[21] 工業技術研究院-太陽光電系統推廣技術通報,2008.
[22] Huang, Hung-Chi, “The Best Arrangement Discuss Solar Concentrator Mirrors,"Kaohsiung, Kao Yuan University, Taiwan, 2015.
[23] Hein M, Meusel M, Baur C, Dimroth F, Lange G, Siefer G, et al. Characterisation of a 25% high-efficiency Fresnel lens module with GaInP/GaInAs dual-junction concentrator solar cells, 17th EU-PVSEC munich October, paper OB5.4; 2001.
[24] Bett AW, Baur C, Dimroth F, Lange G, Meusel M, Riesen SV, et al. Flatcon-modules: technology and characterization. In. IEEE 3rd world conference on photovoltaics; May 12-16 Osaka/Japan, 2003.
[25] Terao A, Mulligan WP, Daroczi SG, Pujol OC, Verlinden PJ, Swanson RM, et al. A mirror-less design for micro-concentrator modules. In. Photovoltaic specialists conference, conference record of the twenty-eighth IEEE, p. 1416-19, 2000.
[26] Alvarez J.L, Cabrera J, Diaz V, Mateos C, Montoya N, Alonso J, et al. Industrialization of 1000X concentration photovoltaic modules. Proceedings of SPIE :1-5. 61970I-1, 2006.
[27] Chi-tang Ma, “Design of Static Solar Concentrator with Interlaced Double-Layer Lens Arrays for Natural Light Illumination System,"Taipei, National Taiwan University of Science and Technology, Taiwan, 2011.
[28] Fu L, Leutz R, Annen H.P. Secondary Optics for Fresnel Lens Solar Concentrators [J]. Processing of SPIE(S0277-786X),2010.
[29] Benitez P, Miñano J.C, Zamora P, et al. High Performance Fresnel-based Photovoltaic Concentrator [J]. Optics Express(S1094-4087),2010.
[30] Paul Marks, “Sunflower solar harvester provides power and water,” New Scientist tech, 2014.
[31] Bett A.W, Burger B, Dimroth F, Siefer G, Lerchenmüller H. High-concentration PV using III-V solar cells. In. IEEE 4th world conference on photovoltaic energy conversion; May 7-12 2006 [Hawaii].
[32] Rumyantsev V.D, Sadchikov N.A, Chalov A.E, Ionovaa E.A, Friedmanb D.J, Glennc G, et al. Terrestrial concentrator PV modules based on GaInP/GaAs/Ge Tj cells and minilens panels, 1-4244-0016- IEEE. p. 632-35, 3/06/2006.
[33] Mark S, Stephen J.H. Shield for solar radiation collector. Solfocus Inc. Patent no US747300 B; Jan 6 2009.
[34] Garg H.P, Adhikari R.S. Optical design calculations for CPCs. Energy 1998;23(No 10):907-9.
[35] Gallo M, Mescia L, Losito O, Bozzetti M, Prudenzano F. Design of optical antenna for solar energy collection. Energy 2011. http://dx.doi.org/10.1016/j. Energy 2011.02.026.
[36] Siefer G, Bett A.W. Experimental comparison between the power outputs of Flatcon@ modules and silicon flat plate modules. 0-7803-87074/05 IEEE. p. 643-46.

[37] Jose L.A, Vicente D, Jesus A. Optics design key points for high gain photovoltaic solar energy concentrators. Proceedings of SPIE 2005;5962. 596210: p.9 .
[38] Ekkard B, Alexander G, Daniel P, Jose B, Pablo B, Vicente D et al. Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules. In. 3rd international workshop on CPV session II, Bremerhaven, Germany; October 20-22 2010.
[39] Chen,Chang-Yi, “Sun Tracking for Photovoltaic Systems,"Taipei, St. John's University, Taiwan, 2015.
[40] Winston R., Johnston B, and Balkowski K, “Development of Non- Tracking Solar Thermal Technology,” Proc. AIP Conf. Proc., 1401, pp. 406–412. 2011.
[41] Ye Yin, Li Li, Chuan-Yung Liou, chun Lin, Yun-Hsia Chang, 2014, “Hemispheric compound eye natural light collecting device," Patent CN103777334A.
[42] 廖重賓,陳長江,張憲銘,2009,“可接收具有不同入射角之光線的太陽能收集器",中華民國專利第 097119780號.
[43] Chung-Jui Lee, Jen-Fin Lin, “High-efficiency concentrated optical module,” Journal Energy 44 ( 593-603 ), p.3-11, 2012.
[44] A. Antonini, M. Stefancich, J. Coventry, A. Parretta, “Modelling of Compound Parabolic Concentrators for Photovoltaic Applications,” International Journal of Optics and Applications, 2013.
[45] Welford WT, Winston R. High collection nonimaging optics. 1sted. USA: Academic Press Inc. 2000.
[46] H. Liou, L. Jiang, and L. Hu, “Lens design of street lamp for integrated high-power LED,” Proc. of SPIE, vol. 7635, 763508, 2009.
[47] L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,” Appl. Opt., vol. 48, no. 29, pp. 5520-5527, 2009.

[48] J.J Chen, K.L Huang, T.Y Wang, Y.C Wang, C.C Wang, and T.Y Guo, “LED lighting module design based on a prescribed candle-power distribution for uniform illumination,” Proc. of SPIE, vol. 7849, 78490X, 2010.
[49] K.L Huang, J.J Chen, T.Y Wang and L.L Huang, “Free-form lens design for LED indoor illumination,” Proc. of SPIE, vol. 7852, 78521D, 2010.
[50] A. E. F. Taylor, "illumination fundamentals," Optical Research Associates, 2000.
[51] V.N Mahajan, "Optical Imaging and Aberrations, Part I - Ray Geometrical Optics," SPIE, 1998.
[52] C. Horn, W. Little, and E. Salter, "Relation of Distance to Candle-Power Distribution from Fluorescent Luminaires," Illuminating Engineering, vol. 47, p.99, 1952.
[53] W.B Robert, "Radiometry and the detection of optical radiation," Wiley-Interscience, 1983.
[54] Welford W.T, Winston R. High collection nonimaging optics. 1st ed. USA: Academic Press Inc.; 2000.
[55] Sarah Anderson Goehrke, "3D Printed Light Trap Arrays Enhance Solar Cell Performance,"3D design, 3D printing,
https://3dprint.com/58515/solar-cell-light-trap-arrays/, Apr 15 2015.
[56] Jin-Jia Chen, “Freeform surface design for a light-emitting diode–based collimating lens,” Optical Engineering 49(9), 093001, 2010.
[57] Feng-Tzu Hsu, “The design and fabrication for the controllable optical field of multi-curvature lens with thin film metallic glasses,"Department of Mechanical and Electro-Mechanical EngineeringNational Sun Yat-sen University, Taiwan. p.39-41. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.9.115
論文開放下載的時間是 校外不公開

Your IP address is 3.143.9.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code