Responsive image
博碩士論文 etd-0731116-190915 詳細資訊
Title page for etd-0731116-190915
論文名稱
Title
放大轉發中繼端系統中,結合來源端及全雙工中繼端空時濾波器設計
Joint Source and Full-Duplex Relay Space-Time Filtering Design in Amplify-and-Forward MIMO Relay Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
48
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-24
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
最小均方錯誤、頻率選擇性通道、全雙工中繼端、合作式通訊系統、空時濾波器、自我干擾、無限脈衝響應濾波器
self-interference, frequency selective fading channel, space-time filtering, Full-duplex systems, minimum mean-squared error (MMSE), multiple-input multiple-output relay (MIMO Relay) systems
統計
Statistics
本論文已被瀏覽 5675 次,被下載 70
The thesis/dissertation has been browsed 5675 times, has been downloaded 70 times.
中文摘要
多輸入多輸出中繼系統能有效改善訊號傳輸的可靠性及擴展通訊的涵蓋範圍。然而,在合作式通訊系統中,一般中繼端皆採用半雙工機制,分別利用接收與傳送兩階段,幫忙來源端傳送信號至目的端。由於半雙工中繼端需要兩階段傳送單一信號,頻譜使用效率低,因此研究者發展出全雙工多輸入多輸出中繼端系統,有效改善頻譜效率。然而,全雙工中繼端同時進行傳送跟接收信號,中繼端會因為接收到中繼端傳送的資料進而產生自我干擾,此干擾將會大幅地限制整體終端到終端之間的效能。為了降低自我干擾的影響,許多論文著重於中繼端預編碼的設計,抑制自我干擾的影響。然而,在頻率選擇性通道衰落通道環境時,預編碼設計較為困難。因此本論文將設計來源端及中繼端空時濾波器去減少頻率選擇性衰落通道及自我干擾所造成的影響,強化接收效能。由於中繼端自我干擾的影響,中繼端輸入和輸出信號的關係可以模式化為無限脈衝響應濾波器,我們考量來源端到中繼端鏈路及中繼端到目的端鏈路的通道,設計非線性連續干擾消除中繼端空時濾波器,抑制自我干擾的影響。在本論文中我們採用最小均方錯誤及最大化整體容量準則設計預編碼,我們先將時域信號轉成頻域信號簡化處理,然而所對應的最佳化問題形式複雜,不容易找到最佳解,因此,我們提出一連串的簡化處理方式,最終以疊代形式得到一種次佳解析解。由模擬結果得知,我們所提出的方法可以顯著優於其他現有的方法。
Abstract
The multiple-input multiple-output relay (MIMO relay) systems are developed to efficiently improve the link reliability and extend the communication coverage. However, the relaying process needs two phases to separately receive and re-transmit signals, which is so-called half-duplex transmission. The full-duplex (FD) MIMO relay systems are then developed to improve the spectral efficiency. However, the relay nodes incur self-interference due to simultaneous receive and transmission of data signals, which greatly limits the overall end-to-end performance. Therefore, many works focus on the relay precoder design to mitigate the influence of the self-interference. However, in the presence of frequency selective fading channels, the design is much more involved. In this thesis, we jointly design source and relay space-time filters to mitigate the influence of both frequency selective fading channel and the self-interference caused by FD device. Since the relation of the input and output signals caused by the self-interference at the relay can be modeled as IIR filter, we develop a nonlinear successive interference cancellation (SIC) based relay space-time filter to suppress the self-interference and meanwhile leverage the channels of the source-relay and relay-destination links. The proposed joint source and relay space-time filters are conducted by minimum mean-squared error (MMSE) and maximum overall capacity. However, the corresponding optimizations are intractable to be solved due to the complicated formulations. We then propose a serious simplification process that can iteratively obtain the closed-form solutions. Numerical results show that the proposed design can significantly outperform the other existing methods.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖次 vii
第1章 序言 1
第2章 系統模型 8
第2.1節 多輸入多輸出全雙工中繼系統模型 8
第2.2節 最小均方錯誤接收機頻域系統模型 10
第3章 最小均方錯誤準則之最佳空時濾波器設計 14
第3.1節 最佳化問題描述 14
第3.2節 來源端與中繼端濾波器設計 15
第4章 最大化通道容量準則之最佳濾波器設計 20
第4.1節 最佳化問題描述 20
第4.2節 來源端與中繼端濾波器設計 21
第5章 系統模擬及探討 25
第6章 結論與未來展望 29
參考文獻 30
附錄A 32
附錄B 34
附錄C 36
附錄D 39
參考文獻 References
[1] D. Gesbert, M. Shafi, and D.-S. Shiu, “From theory to practice: An overview of MIMO space–time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281-302, Apr. 2003.
[2] M. Z. Siam and M. Krunz, “An overview of MIMO-oriented channel access in wireless networks,” IEEE Wireless Commun., vol. 15, no. 1, pp. 63-69, Feb. 2008.
[3] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp. 74-80, Oct. 2004.
[4] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in eireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[5] Y. Ding, J.-K. Zhang, and K. M. Wong, “Optimal precoder for amplify-and-forward half-duplex relay system,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 2890-2895, Aug. 2008.
[6] E. Antonio-Rodríguez, R. López-Valcarce, T. Riihonen, S. Werner, and R. Wichman, “Autocorrelation-based adaptation rule for feedback equalization in wideband full-duplex amplify-and-forward MIMO relays,” IEEE Commun. Conf. on Acoustics, Speech and Signal Processing, pp. 4968-4972, May 2013.
[7] P. Lioliou, M. Viberg, M. Coldrey, and F. Athley, “Self-interference suppression in full-duplex MIMO relays,” Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pp. 658-662, Nov. 2010.
[8] B. Chun and Y. H. Lee, “A spatial self-interference nullification method for full duplex amplify-and-forward MIMO relays,” IEEE Wireless Commun. and Networking Conf., pp. 1-6, Apr. 2010.
[9] M. A. Ahmed, C. C. Tsimenidis, and S. Y. Le Goff, “Performance analysis of full-duplex MIMO-SVD-SIC based relay in the presence of channel estimation errors,” IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 467-472, Oct. 2014.
[10] J. S. Lemos, F. A. Monteiro, I. Sousa, and A. Rodrigues, “Full-duplex relaying in MIMO-OFDM frequency-selective channels with optimal adaptive filtering,” IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1081-1085, Dec. 2015.
[11] E. Ahmed, A. M. Eltawil, and B. A. Cetiner, “Full-duplex systems using multireconfigurable antennas,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 5971-5983, Nov. 2015.
[12] M. Duarte and A. Sabharwal,“Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results,”Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pp. 1558–1562, Nov. 2010.
[13] T. Riihonen, S. Werner, and R. Wichman, “Spatial Loop Interference Suppression in Full-Duplex MIMO Relays,” Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, pp. 1508-1512, Nov. 2009.
[14] T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex MIMO relays,” IEEE Trans. Signal Processing, vol. 59, no. 12, pp. 5983-5993, Dec. 2011.
[15] B. Chun and H. Park, “A spatial-domain joint-nulling method of self-interference in full-duplex relays,” IEEE Trans. Commun. Letters, vol. 16, no. 4, pp. 436-438, Apr. 2012.
[16] D. S. Bernstein, Matrix Mathematics, Princeton University Press, 2005.
[17] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, 2nd edition, Wiley-IEEE Press, 2004.
[18] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[19] P. P. Vaidyanathan, S.-M. Phoong and Y.-P. Lin, Signal Processing and Optimization for Transceiver Systems, Cambridge University Press, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code