Responsive image
博碩士論文 etd-0731117-082848 詳細資訊
Title page for etd-0731117-082848
論文名稱
Title
(1) 以層狀雙氫氧化物實現高分子點之固化及提升發光團穩定性; (2) 以晶種還原法在石墨烯-半導體複合基板上調控金奈米粒子之3D結構與拉曼光譜應用
(1) Toward Fluorescence Preservation and Solidification of Polymer Dots via Hybridization with Layered Double Hydroxides; (2) Controlled 3D structures of Gold Nanoparticles on Graphene-semiconductor Hybrid Panel for Raman Scattering Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-13
繳交日期
Date of Submission
2017-09-01
關鍵字
Keywords
層狀雙氫氧化物、表面增強拉曼、晶種還原法、金奈米粒子、半導體、石墨烯、固化、高分子點
gold nanoparticles, semiconductor, layered double hydroxides, polymer dots, solidification, graphene, seed-mediated method, surface-enhanced Raman scattering
統計
Statistics
本論文已被瀏覽 5694 次,被下載 22
The thesis/dissertation has been browsed 5694 times, has been downloaded 22 times.
中文摘要
本文分成兩個部分。第壹章中,我們探討有關高分子點(polymer dots)與層狀雙氫氧化物(layered double hydroxides)的複合材料。第貳章中,則將探討金奈米粒子在石墨烯-半導體複合基板(graphene-semiconductor hybrid panel)上的生長行為。
  首先,高分子點近年來因其高量子產率、低生物毒性及在水中良好的分散性等特性作為光致發光材料而備受矚目。然而表面分布羧酸基的高分子點其實容易受到環境溶液的影響,尤其在酸性或高離子強度之溶液中高分子點會因為聚集,導致螢光強度將大幅下降。此外,高分子點的固化也會有嚴重的聚集,除了螢光強度減弱外也無法再分散回水中;以及水溶液的高分子點須存放於低溫及暗處,這些因素都使得高分子點的保存、運輸和應用變得困難。我們利用具有隔絕環境功能的二維材料層狀雙氫氧化物與高分子點結合,以三種方法製備出複合物並分別對其進行穩定度測試。三種方法(多步驟合成法、一步合成法、物理混合法)所製備出的高分子點/層狀雙氫氧化物複合材料皆可在pH=4-12的磷酸鹽緩衝溶液中保持螢光強度,也展現了較純高分子點高的耐高溫性質。高分子點/層狀雙氫氧化物複合材料乾燥固化後也可輕易再分散回水溶液中,成功避免高分子點聚集的問題。經過鑑定後我們推論三種合成方法所得到之高分子點/層狀雙氫氧化物複合材料有相似的組裝結構,多步驟合成法並未如預期般得到層間嵌入高分子點的結構,我們推測是因為高分子點相對於染料分子或量子點較不具剛性,並且與層狀雙氫氧化物縱向層與層間的尺度差異太大的原因。但三種高分子點/層狀雙氫氧化物複合材料皆有良好的螢光保存性質,預期可應用於條件更嚴苛的生物實驗或光電元件中。



  而在第貳章的部分,金奈米粒子的外型、表面是否具有特殊結構、裸露的晶面等都將會直接影響到其光學及催化性質,因此在催化、感測等領域都倍受重視。要製備具有3D結構或非球形的金奈米粒子,一般需藉由晶種還原法將金屬的晶種以介面活性劑或其他離子來調控,在溶液中生成金奈米粒子。
  石墨烯具有高導電、高導熱、高電子遷移率的性質,並且具有表面增強拉曼的性質。我們將石墨烯與有光催化活性的TiO2組成複合基板,藉由紫外光激發使TiO2生成電子、電洞對,使反應溶液中的金離子直接還原在基板表面生成金奈米粒子。我們可藉由調控金離子濃度或將石墨烯氧化來調控金奈米粒子的分佈及尺寸。再藉由晶種還原法,可在石墨烯-TiO2複合基板上製備出具有3D結構、表面帶有尖刺結構的金奈米粒子,可直接做為SERS量測基板,具有高熱點分布密度。除了可調控與金奈米粒子密度相對應的拉曼光譜強度的標準差,石墨烯與金奈米粒子組成的材料可使增強因子高達108,還可以轉移至其他基板,極具應用潛力。
Abstract
This thesis are divided into two parts. First, semiconducting polymer dots (PDs) recently rise as promising materials in biomarkers and bioprobes. However PDs suffer from poor dispersibility when carboxyl groups of the surface failed to dissociate, particularly under acidic and strong ionic conditions, leading to aggregation quench. To address these issues, we introduced the layered double hydroxides (LDH) to hybrid with PDs. Three different strategies to synthesize new hybrids of PDs-LDH are conducted, including multi-step assembly, single-step synthesis, and simple physical mixing (by mixing LDH directly with PDs.) All three of the PDs-LDH hybrids successfully preserve fluorescence under a wide range of pH conditions (from 4 to 12), compared to the rapid emission quenching of PDs under the identical environments. They also exhibit enhanced thermal stability and superior re-dispersibility to pristine PDs after solidified to flexible films. We found that three PDs-LDH samples shared the same assembly structure due to the deformable properties of PDs. With the enhanced stability in solution as well as after solidified, PDs-LDH is promising in more applications such as electronic devices which needs thermal endurance and film-formability.

Next, we are going to talk about gold nanoparticles deposited on graphene-semiconductor hybrid panel. To prepare gold nanoparticles with different shape and surface structure is crucial, since the features are related with optical and catalytic properties directly. Generally, to prepare gold nanoparticles with special shape (other than sphere) or structure, seed-mediated method is adopted. Surfactant and halide ions or metal ions are used to mediate the metal seeds which prepared in solution surroundings.
The high electric conductivity, thermal conductivity, electron mobility and the ability in Raman enhancement of graphene has been considered benefit for diversity of application. We combine graphene with semiconducting TiO2, generating electron by ultraviolet excitation, making gold ions be reduced and depositing on the surface of the graphene-TiO2 hybrid solid substrate. By changing the concentration of gold ions or oxidize the graphene, we can adjust the density of gold seeds. We successfully mediate the seeds to gold nanoparticles with spike structure by further using the growth solution from seed-mediated method under specific temperature. Together with graphene and the gold nanoparticles deposited on top, the hybrid panel can reach 108 of enhancement factor of surface enhance Raman spectrum.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
第壹章、以層狀雙氫氧化物實現高分子點之固化及提升發光團穩定性 1
一、研究動機 1
二、背景介紹及文獻回顧 2
2.1. 高分子點(PDs) 2
2.2. 層狀雙氫氧化物(LDH) 5
三、實驗方法 8
3.1. 合成PDs/LDH複合材料(PLDH) 8
3.2. 鑑定方法 9
四、結果與討論 11
4.1. 設計與合成PLDH複合物 11
4.2. PDs的固化 13
4.3. 螢光及量子產率的比較 15
4.4. 螢光穩定性 17
4.5. 生物影像 20
4.6. 熱穩定性 22
4.7. PLDH複合物之組裝結構探討 24
五、結論 32
第貳章、 以晶種還原法在石墨烯-半導體複合基板上調控金奈米粒子之3D結構與拉曼光譜應用 33
一、研究動機 33
二、背景介紹37
2.1. 石墨烯 37
2.1.1. 石墨烯製備方法 37
2.2.2. 石墨烯的拉曼光譜鑑定 39
2.2. 石墨烯-半導體複合基板(graphene-semiconductor hybrid panel, GHP) 40
2.3. 晶種還原法. 42
2.4. 表面增強拉曼光譜 44
三、實驗方法 45
3.1. 以氣相沉積法製備單層石墨烯 45
3.2. 石墨烯-半導體複合基板之製作 45
3.3. 製備晶種 (seeded GHP, sGHP) 46
3.4. 對晶種的調控(AuGHP) 48
.3.5. SERS量測 48
四、結果與討論 49
4.1. 石墨烯-半導體複合基板鑑定 49
4.2. 製備sGHP 50
4.2.1. 金氯酸濃度 50
4.2.2. 介面活性劑 CTAB、SDS 54
4.2.3.鹵素 KI、KBr、KCl的添加 59
4.2.4. CTAB與KI的添加 的添加 63
4.2.5. 石墨烯改質 (GOHP) 65
4.3. 在GHP上調控晶種外型(AuGHP) 67
4.3.1. 文獻配方與 GHP系統 67
4.3.2. 生長溶液濃度 69
4.3.3. 改變溫度 71
4.3.4. 銀離子的影響 74
4.3.5. 不同 晶種製備 AuGHP75
4.4. 表面增強拉曼 78
4.4.1. 石墨烯的影響 81
五、結論 83
參考文獻 84
附錄 89
參考文獻 References
(1) Karakoti, A. S.; Shukla, R.; Shanker, R.; Singh, S. Adv. Colloid Interface Sci. 2015, 215, 28.
(2) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.
(3) Clafton, S. N.; Beattie, D. A.; Mierczynska-Vasilev, A.; Acres, R. G.; Morgan, A. C.; Kee, T. W. Langmuir 2010, 26, 17785.
(4) Howes, P.; Green, M. Photochem. Photobiol. Sci. 2010, 9, 1159.
(5) Wu, C.; Jin, Y.; Schneider, T.; Burnham, D. R.; Smith, P. B.; Chiu, D. T. Angew. Chem. Int. Ed. Engl. 2010, 49, 9436.
(6) Chan, Y. H.; Wu, C.; Ye, F.; Jin, Y.; Smith, P. B.; Chiu, D. T. Anal. Chem. 2011, 83, 1448.
(7) Jin, Y.; Ye, F.; Wu, C.; Chan, Y.-H.; Chiu, D. T. Chem. Commun. 2012, 48, 3161.
(8) Yu, J.; Wu, C.; Zhang, X.; Ye, F.; Gallina, M. E.; Rong, Y.; Wu, I. C.; Sun, W.; Chan, Y. H.; Chiu, D. T. Adv. Mater. 2012, 24, 3498.
(9) Wu, P. J.; Kuo, S. Y.; Huang, Y. C.; Chen, C. P.; Chan, Y. H. Anal. Chem. 2014, 86, 4831.
(10) Ye, F.; Wu, C.; Sun, W.; Yu, J.; Zhang, X.; Rong, Y.; Zhang, Y.; Wu, I. C.; Chan, Y. H.; Chiu, D. T. Chem. Commun. 2014, 50, 5604.
(11) Chan, Y.-H.; Wu, P.-J. Part. Part. Syst. Char. 2015, 32, 11.
(12) Liu, H.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chen, C.-P.; Chang, E.-H.; Wu, C.-Y.; Chan, Y.-H. J. Am. Chem. Soc. 2015, 137, 10420.
(13) Xiong, L.; Cao, F.; Cao, X.; Guo, Y.; Zhang, Y.; Cai, X. Bioconjugate Chem. 2015, 26, 817.
(14) Zhang, Y.; Ye, F.; Sun, W.; Yu, J.; Wu, I. C.; Rong, Y.; Zhang, Y.; Chiu, D. T. Chem. Sci. 2015, 6, 2102.
(15) Chen, Y.-H.; Kuo, S.-Y.; Tsai, W.-K.; Ke, C.-S.; Liao, C.-H.; Chen, C.-P.; Wang, Y.-T.; Chen, H.-W.; Chan, Y.-H. Anal. Chem. 2016, 88, 11616.
(16) Sun, W.; Ye, F.; Gallina, M. E.; Yu, J.; Wu, C.; Chiu, D. T. Anal. Chem. 2013, 85, 4316.
(17) Cho, S.; Kwag, J.; Jeong, S.; Baek, Y.; Kim, S. Chem. Mater. 2013, 25, 1071.
(18) Liang, R.; Yan, D.; Tian, R.; Yu, X.; Shi, W.; Li, C.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2014, 26, 2595.
(19)Costa, F. R.; Leuteritz, A.; Wagenknecht, U.; Jehnichen, D.; Haubler, L.; Geinrich, G. Appl. Clay Sci. 2008, 38, 153.
(20) Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Chem. Mater. 2002, 14, 4286.
(21) Tyagi, B.; Sharma, U.; Jasra, R. V. Appl. Catal. A 2011, 408, 171.
(22) Gago, S.; Pillinger, M.; Santos, T. M.; Goncalves, I. S. Ceram. Silikaty 2004, 48, 155.
(23) Valente, J. S.; Jose, H.-C.; Cantu, M. S.; Ferrat, G.; Esteban, L.-S. Catal. Today 2010.
(24) Carrado, K. A.; Kostapapas, A.; Suib, S. L. Solid State Ionics 1988, 26, 77.
(25) Grosso, R. P.; Suib, S. L.; Weber, R. S.; Schubert, P. F. Chem. Mater. 1992, 4, 922.
(26) Villegas, J. C.; Giraldo, O. H.; Laubernds, K.; Suib, S. L. Inorg. Chem. 2003, 42, 5621.
(27) Iyi, N.; Matsumoto, T.; Kaneko, Y.; Kitamura, K. Chem. Mater. 2004, 16, 2926.
(28) Wang, L.; Ebina, Y.; Takada, K.; Kurashima, K.; Sasaki, T. Adv. Mater. 2004, 16, 1412.
(29) Lee, J. H.; Rhee, S. W.; Jung, D.-Y. Bull. Korean Chem. Soc. 2005, 26, 248.
(30) Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2006, 128, 4872.
(31) Costa, F. R.; Leuteritz, A.; Wagenknecht, U.; Jehnichen, D.; Haubler, L.; Geinrich, G. Appl. Clay Sci. 2008, 38, 153.
(32) Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Nat. commun. 2014, 5, 3410.
(33) Musumeci, A. W.; Mortimer, G. M.; Butler, M. K.; Xu, Z. P. M., R. F.; Martin, D. J. Appl. Clay Sci. 2010, 48, 271.
(34) Hibino, T. Chem. Mater. 2004, 16, 5483.
(35) Hibino, T.; Kobayashi, M. J. Mater. Chem. 2005, 15, 653.
(36) Li, L.; Ma, R.; Ebina, Y.; Iyi, N.; Sasaki, T. Chem. Mater. 2005, 17, 4386.
(37) Xu, Z. P.; Stevenson, G. S.; Lu, C.-Q.; Bartlett, P. F.; Gray, P. P. J. Am. Chem. Soc. 2006, 128, 36.
(38) Ma, R.; Liu, Z.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. J. Am. Chem. Soc. 2007, 129, 5257.
(39) Ma, R.; Liu, Z.; Li, L.; Iyi, N.; Sasaki, T. J. Mater. Chem. 2006, 16, 3809.
(40) Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124.
(41) Costantino, U.; Coletti, N.; Nocchetti, M.; Aloisi, G. G.; Elisei, F.; Latterini, L. Langmuir 2000, 16, 10351.
(42) Mandal, S.; Tichit, D.; Lerner, D. A.; Marcotte, N. Langmuirs 2009, 25, 10980.
(43) Wei, P.-R.; Cheng, S.-H.; Liao, W.-N.; Kao, K.-C.; Weng, C.-F.; Lee, C.-H. J. Mater. Chem. 2012, 22, 5503.
(44) Tetsuka, H.; Ebina, T.; Mizukami, F. Advanced Materials 2008, 20, 3039.
(45) Lu, M.; Shan, Z.; Andrea, K.; MacDonald, B.; Beale, S.; Curry, D. E.; Wang, L.; Wang, S.; Oakes, K. D.; Bennett, C.; Wu, W.; Zhang, X. Langmuir 2016, 32, 2659.
(46) Choy, J.-H.; Kwak, S.-Y.; Park, J.-S.; Jeong, Y.-J. J.Mater. Chem. 2001, 11, 1671.
(47) Liu, J.; Chen, G.; Yang, J. Polymer 2008, 49, 3923.
(48) Zhou, L.; Geng, J.; Wang, G.; Liu, J.; Liu, B. Polym. Chem. 2013, 4, 5243.
(49) Keita, H.; Guzelturk, B.; Pennakalathil, J.; Erdem, T.; Demir, H. V.; Tuncel, D. J. Mater. Chem. C 2015, 3, 10277.
(50) Amita, S.; Michael, B.; Nichola, W.; Jason, B.; Riccardo, F.; Suxiao, W.; Kathleen, T. F.; William, M. G.; Patrick, K.; Gareth, R. Nanotechnology 2016, 27, 305603.
(51) Liu, Z.-h.; Ooi, K.; Kanoh, H.; Tang, W.; Yang, X.; Tomida, T. Chem. Mater. 2001, 13, 473.
(52) Rong, Y.; Wu, C.; Yu, J.; Zhang, X.; Ye, F.; Zeigler, M.; Gallina, M. E.; Wu, I. C.; Zhang, Y.; Chan, Y.-H.; Sun, W.; Uvdal, K.; Chiu, D. T. ACS Nano 2013, 7, 376.
(53) Dulbecco, R.; Vogt, M. The Journal of Experimental Medicine 1954, 99, 167.
(54) Wu, C.; Chiu, D. T. Angew. Chem. Int. Ed. Engl. 2013, 52, 3086.
(55) Chen, D.; Li, Q.; Meng, Z.; Guo, L.; Tang, Y.; Liu, Z.; Yin, S.; Qin, W.; Yuan, Z.; Zhang, X.; Wu, C. Theranostics 2017, 7, 1820.
(56) Ljungqvist, N.; Hjertberg, T. Macromolecules 1995, 28, 5993.
(57) Ladewig, K.; Niebert, M.; Xu, Z. P.; Gray, P. P.; Lu, G. Q. Appl. Clay Sci. 2010, 48, 280.
(58) Li, A.; Qin, L.; Wang, W.; Zhu, R.; Yu, Y.; Liu, H.; Wang, S. Biomaterials 2011, 32, 469.
(59) Chen, M.; Cooper, H. M.; Zhou, J. Z.; Bartlett, P. F.; Xu, Z. P. J. Colloid Interface Sci. 2013, 390, 275.
(60) Balcomb, B.; Singh, M.; Singh, S. ChemistryOpen 2015, 4, 137.
(61) Gu, J.; Zhang, Y.-W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050.
(62) Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; de la Fuente, J. M.; Chen, D.; Cui, D. ACS Nano 2016, 10, 8169.
(63) Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Chem. Soc. Rev. 2008, 37, 1783.
(64) Sperling, R. A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W. J. Chem. Soc. Rev. 2008, 37, 1896.
(65) Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater.s 2001, 13, 1389.
(66) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
(67) Bakr, O. M.; Wunsch, B. H.; Stellacci, F. Chem. Mater. 2006, 18, 3297.
(68) Fan, F.-R.; Liu, D.-Y.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q. J. Am. Chem. Soc. 2008, 130, 6949.
(69) Lee, Y. W.; Kim, M.; Kim, Y.; Kang, S. W.; Lee, J.-H.; Han, S. W. J. Phys. Chem. C 2010, 114, 7689.
(70) Li, J.; Wu, J.; Zhang, X.; Liu, Y.; Zhou, D.; Sun, H.; Zhang, H.; Yang, B. The J. Phys. Chem. C 2011, 115, 3630.
(71) Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Nano Lett. 2011, 11, 3394.
(72) Xu, S.; Jiang, S.; Wang, J.; Wei, J.; Yue, W.; Ma, Y. Sens. Actuators, B 2016, 222, 1175.
(73) Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
(74) Jin, R.; Charles Cao, Y.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.
(75) Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y.; Bao, F.; Sun, B.; Zhang, X.; Zhang, Q. Nano Lett. 2014, 14, 7201.
(76) Chen, Y.; Gu, X.; Nie, C.-G.; Jiang, Z.-Y.; Xie, Z.-X.; Lin, C.-J. Chem. Commun. 2005, 4181.
(77) Bakshi, M. S. Cryst. Growth Des. 2016, 16, 1104.
(78) Cheng, L.-C.; Huang, J.-H.; Chen, H. M.; Lai, T.-C.; Yang, K.-Y.; Liu, R.-S.; Hsiao, M.; Chen, C.-H.; Her, L.-J.; Tsai, D. P. J. Mater. Chem. 2012, 22, 2244.
(79) Brus, L. Nat. Mater. 2016, advance online publication.
(80) Soliwoda, K.; Rosowski, M.; Tomaszewska, E.; Tkacz-Szczesna, B.; Celichowski, G.; Grobelny, J. Colloids Surfaces A 2015, 486, 211.
(81) Guo, Q.; Xu, M.; Yuan, Y.; Gu, R.; Yao, J. Langmuir 2016, 32, 4530.
(82) Fan, M.; Andrade, G. F. S.; Brolo, A. G. Anal. Chim. Acta 2011, 693, 7.
(83) Kuo, C. C.; Chen, C. H. Nanoscale 2014, 6, 12805.
(84) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
(85) Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192.
(86) Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Carbon 2011, 49, 4204.
(87) Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Carbon 2011, 49, 4122.
(88) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
(89) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.
(90) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 51.
(91) Ha, T. H.; Koo, H.-J.; Chung, B. H. J. Phys. Chem. C 2007, 111, 1123.
(92) Moon, S. Y.; Kusunose, T.; Sekino, T. Mater. Lett. 2009, 63, 2038.
(93) Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Nano lett. 2005, 5, 1569.
(94) Chang, C.-C.; Yang, K.-H.; Liu, Y.-C.; Hsu, T.-C.; Mai, F.-D. ACS Appl. Mater. Interfaces 2012, 4, 4700.
(95) Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. J. Phys Chem. C 2007, 111, 13794.
(96) Wei, H.; Xu, H. Nanoscale 2013, 5, 10794.
(97) Kleinman, S. L.; Frontiera, R. R.; Henry, A.-I.; Dieringer, J. A.; Van Duyne, R. P. Phys. Chem. Chem. Phys. 2013, 15, 21.
(98) Tian, L.; Luan, J.; Liu, K. K.; Jiang, Q.; Tadepalli, S.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Nano lett. 2016, 16, 609.
(99) Shankar, S. S.; Bhargava, S.; Sastry, M. J. Nanosci. Nanotechnol. 2005, 5, 1721.
(100) Tan, Y.; Zang, X.; Gu, J.; Liu, D.; Zhu, S.; Su, H.; Feng, C.; Liu, Q.; Lau, W. M.; Moon, W. J.; Zhang, D. Langmuir 2011, 27, 11742.
(101) Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N. J. Phys. Chem. C 2015, 119, 28597.
(102) Durovic, M. D.; Puchta, R.; Bugarcic, Z. D.; van Eldik, R. Dalton Trans. 2014, 43, 8620.
(103) Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Small 2011, 7, 2868.
(104) Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N. J. Phys. Chem. C 2015, 119, 28597.
(105) Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. Nano Lett. 2010, 10, 553.
(106) Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J. G. ACS Nano 2011, 5, 952.
(107) Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M. S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Proc. Natl. Acad. Sci. 2012, 109, 9281.
(108) Ling, X.; Huang, S.; Deng, S.; Mao, N.; Kong, J.; Dresselhaus, M. S.; Zhang, J. Acc. Chem. Res. 2015, 48, 1862.
(109) Yan, Z.-X.; Zhang, Y.-L.; Wang, W.; Fu, X.-Y.; Jiang, H.-B.; Liu, Y.-Q.; Verma, P.; Kawata, S.; Sun, H.-B. ACS Appl. Mater. interfaces 2015, 7, 27059.
(110) Wang, J.; Jin, M.; Gong, Y.; Li, H.; Wu, S.; Zhang, Z.; Zhou, G.; Shui, L.; Eijkel, J. C. T.; van den Berg, A. Lab Chip 2017, 17, 1970.
(111) Wang, M.; Cao, X.; Lu, W.; Tao, L.; Zhao, H.; Wang, Y.; Guo, M.; Dong, J.; Qian, W. RSC Adv. 2014, 4, 64225.
(112) Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S. J. Am. Chem. Soc. 2015, 137, 13698.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code