Responsive image
博碩士論文 etd-0731118-100625 詳細資訊
Title page for etd-0731118-100625
論文名稱
Title
長江口和北台灣海峽之間泥質帶沉積物特性之空間變化
Spatial Variability along the Mud Belt between the Mouth of Changjiang and northern Taiwan Strait
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-28
繳交日期
Date of Submission
2018-08-31
關鍵字
Keywords
經驗正交函數、7Be/210Pbex活度之比值、210Pbex活度分析、黏土礦物分析、分光光度計、多重感應元岩心紀錄器、粒徑分析、泥質帶
EOF, 7Be/210Pbex activity ratio, grain size analysis, MSCL, spectrophotometer, 210Pbex activity analysis, clay mineral analysis, mud belt
統計
Statistics
本論文已被瀏覽 5715 次,被下載 68
The thesis/dissertation has been browsed 5715 times, has been downloaded 68 times.
中文摘要
從長江口沿著-浙閩海岸帶至台灣海峽北部,總長約1000公里之泥質帶的沉積物來源,主要來自長江、浙閩的河川以及台灣的濁水溪。此泥質帶沉積物的傳輸主要受到季節性變化的洋流所影響。於冬季時,東北季風使得向南的中國沿岸流傳輸增強;於夏季時,西南季風則使往北的台灣暖流傳輸增強。
本研究透過多時空尺度(水體中的沉降顆粒、海床表層沉積物以及長時間累積於海床上之沉積物)以及多手段的方式(多重感應元岩心紀錄器掃描、黏土礦物分析、粒徑分析、210Pbex活度分析、7Be/210Pbex活度之比值以及經驗正交函數分析),探討冬季泥質帶上沉積物從源到匯過程中的空間變化特徵。
表層沉積物與箱型岩心之沉積物粒徑分析,顯示出泥質帶上之沉積物主要為泥,而濁水溪口的沉積物則主要為砂。由表層沉積物7Be/210Pbex活度的比值可知,來自長江新鮮陸源沉積物是向西南傳輸。黏土礦物分析的結果顯示出泥質帶上的黏土礦物組成受到長江源的影響,表示有長江源的沉積物輸入。從箱型岩心中多重感應元岩心記錄器掃描、分光光度計、粒徑分析及210Pbex活度分析之結果,可知γ-density的值於泥質帶上較小,表示沉積物密度較小且含水率較高,而G3(濁水溪口) γ-density的值最高,表示沉積物密度最高其含水率較低;L*的值於泥質帶上的站位較高,表是泥質帶上之沉積物表面顏色較為明亮,其組成主要為泥。而L*的值於G3(濁水溪口)站位則較低,顯示出沉積物表面亮度較暗淡,其組成主要為砂。長江口(顏色a*較低主要受到河流傳輸過程中長時間的風化所影響)與浙閩沿岸(顏色a*由甌江口向南至台灣海峽北部逐漸降低)的MSI較高,表示其磁性礦物以磁鐵礦為主,而G3(濁水溪口)站位的MSI較低,表示其磁性礦物以磁黃鐵礦為主。由b*的結果可以看出,若沉積物表面顏色較黃時,表示受到長期風化,亦意味著其沉積環境水動力較強,而沉積物表面顏色較深時,則表示其未受到風化,顯示其沉積物環境水動力較弱。綜合上述海底沉積物物理及地化特徵的空間變化,反應出長江口至台灣海峽北部泥質區的沉積系統中物源的變化以及傳輸過程的影響。
Abstract
From the mouth of Changjiang along the coast of Zhejiang and Fujian to the northern part of the Taiwan Strait, over a distance of 1000 km, the primary sediment source of the mud belt is Changjiang. Rivers in Zhejiang, Fujian and the Zhuoshui River in Taiwan also contribute to the sediment source. The sediment transport in this mud belt sediment is mainly affected by seasonally changing ocean currents and river plume. In winter, the northeast monsoon enhances the southwestern China Coastal Currents. In the summer, the southwest monsoon enhances the northward Taiwan Warm Current.
This study uses sediment trap, surface sediments and sediment cores for data acquisition. Various methods (MSCL, clay mineral analysis, grain size analysis, 210Pbex activity analysis, 7Be/210Pbex activity ratio and EOF) were used to explore the spatial variation characteristics of sediments from source to sink during the muddy belt in winter.
The sediment grain size analysis of the surface sediment and the box core shows that the sediment in the mud belt is mainly mud, while the sediment of the Zhuoshui River mouth is mainly sand. The 7Be/210Pbex activity ratio of the surface sediment along the mud belt indicates that the fresh terrestrial sediments from the Changjiang are transported to southwestward into the Taiwan Strait. The results of clay mineral analysis show that the clay mineral composition on the mud belt is closely affected by the Changjiang source. From the measurements of MSCL, spectrophotometer, grain size analysis and 210Pbex activity analysis of the box cores samples that the value of γ-density is smaller along the mud belt, because of the lower sediment density due to high water content. While the value of γ-density is the highest in G3 (Zhuoshui River mouth), because of the sand content.The value of L* is higher along the mud belt. The surface color of the sediment is brighter and its composition is mainly mud. The value of L* is lower at the G3 (near Zhuoshui River mouth), indicating that the surface brightness of the sediment is dim, and its composition is mainly sand. The Changjiang river mouth (lower color a* value is mainly affected by long-term weathering during river transport) and the MSI along the coast of Zhejiang and Fujian (color a* gradually decreases from the Oujiang River mouth to the northern part of the Taiwan Strait), indicating its magnetic minerals are mainly magnetite, while the MSI of the G3 is low, indicating that its magnetic minerals are mainly pyrrhotite. From the results of b* that if the surface color of the sediment is yellow, it suggests that it is subject to long-term weathering, which means that the sedimentary environment is more dynamic. When the surface color of the sediment is darker, it indicates that it is not weathered. It suggests that its sediment environment is less dynamic.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract v
表目錄 xv
第一章 緒論 1
1. 1 前言 1
1.2 研究區域背景 3
1.2.1 東海 3
1.2.2台灣海峽 3
1.2.3 長江 4
1.2.4 台灣西部河流 5
1.2.5 浙閩沿岸河流 6
1.2.6 水文概況 6
1.2.7 前人研究 7
1.3研究目的 13
第二章 研究材料與方法 14
2.1 研究材料 14
2.2 岩心處理流程 16
2.2.1 岩心描述 16
2.3 非破壞性分析 18
2.3.1 多重感應元岩心記錄器 18
2.3.2 分光光度計 19
2.4 樣本分析 19
2.4.1 粒徑分析 19
2.4.2 黏土礦物分析 21
2.4.3 放射性核種分析(7Be) 22
2.4.4放射性核種分析(210Pb) 22
2.4.5 EOF分析 27
第三章 研究結果 29
3.1 表層沉積物結果 29
3.1.1 放射性核種分析結果(7Be) 29
3.1.2 粒徑分析結果 30
3.1.3 黏土礦物結果 31
3.2 沉積物收集器 32
3.2.1 粒徑與黏土礦物分析結果 32
3.3 箱型岩心 35
3.3.1 岩心描述結果 35
3.3.2 多重感應元岩心紀錄器與分光光度計資料結果 36
3.3.3 粒徑分析結果 39
3.3.4 210Pb分析結果 39
3.3.5 正交經驗函數(EOF)結果 41
第四章 討論 58
4.1 岩心中物理性質及顏色的空間變化 58
4.1.1 γ-density與亮度(L*)的空間變化 58
4.1.2 磁感應率及顏色(a*)的空間變化 59
4.1.3 顏色b*的空間變化 60
4.3 沉積物粒徑分佈的空間變化 62
4.4 岩心中放射性核種(210Pb)的空間變化 63
第五章 結論 65
參考文獻 66
附錄-重力岩心 72
附錄一 岩心描述 72
附錄二 粒徑分析結果 72
附錄三 210Pb分析結果 73
附錄四 多重感應元岩心紀錄器與分光光度計資料結果 73
參考文獻 References
陳婷婷,2013。上次冰期時濁水溪口岩心中陸相古沉積環境的解析。
國立中山大學海洋地質及化學研究所碩士論文,共107頁。
黃馨儀,2015。濁水溪口6,000年來沉積系統的演變。國立中山大學
海洋科學系碩士論文,共147頁。
楊仁凱,2010。沖淡水中粒徑結構之時空變化。國立中山大學海洋地
質及化學研究所碩士論文,共160頁。
楊仁凱,2017。晚第四紀以來濁水溪口的陸海相互作用及環境變遷。
國立中山大學海洋科學學系博士論文,共130頁。
羅建育,2005。運用多重感應元岩心記錄器測量海床底質之聲學特
性。海軍軍官季刊第24卷1期,第16-22頁。
Basakaran, M., Ravichandran, M., and Bianchi, T.S., 1997. Cycling of 7Be and 210Pb in a high DOC, shallow, turbid estuary of south-east Texas. Estuarine, Coastal and Shelf Science, 45, 165-176.
Bi, L., Yang, S.Y., Li, C., Guo, Y.L., Wang, Q., Liu, J.T., and Yin, P., 2015. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes. Geochemistry, Geophystry, Geosystems, 16, 3034-3052.
Boggs, S. JR., Wang, W.-C., Lewis, F. S., and Chen, J.-C., 1979. Sediment properties and water characteristics of Taiwan shelf and slope. Acta Oceanographica Taiwan, 10, 10-49.
Cao, W.H., Chen, J., and Ma, J.Q., 2016. Magnetic minerals as tracers for the Mainland coastal rivers and western Taiwan rivers (in Chinese with English abstract). Quaternary Science Review, 35, 227-236.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., and Lin, J.C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648-651.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.-C., Hsu, M.-L., Lin, C.-W., Horng, M.-J., Chen, T.-C., Milliman, J., and Stark, C.P., 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736.
Dong, L. X., Guan, W. B., Chen, Q., Li, X. H., Liu, X. H., and Zeng, X. M., 2011. Sediment transport in the Yellow Sea and East China Sea. Estuarine, Coastal and Shelf Science, 93, 248-258.
Fan, D.J., Yang, Z.S., Mao, D., and Guo, Z.G., 2001. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow Rivers (in Chinese with English absract). Marine Geology Quaternary Geology, 21, 7-12.
Folk, R. L., Andrews, P. B., and Lewis, D., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand journal of geology and geophysics, 13, 937-968.
Goldberg, E. D., 1963. Geochronology with 210Pb. Proceedings of a Symposium on Radioactive Dating, International Atomic Energy Agency. Vienna, Austria, 121-131.
Goldsmith, S.T., Carey, A.E., Lyons, W.B., Kao, S.J., Lee, T.Y., and Chen, J., 2008. Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36, 483-486.
Hanebuth, T. J. J., Lantzsch, H., and Nizou, J., 2015. Mud depocenters on continental shelves-appearance, initiation times, and growth dynamics. Geology Marine Letters, 35, 487-503.
Holmes, C. W.,1998. Short-lived isotopic chronometers – a means of measuring decadal sedimentary dynamics. US Geological Survey Fact Sheet, 73-98.
Huh, C.A., Lin., H.L., Lin, S., and Huang, Y.W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: a tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 76, 405-416.
Huh, C. A., Chen, W., Hsu, F. H., Su, C. C., Chiu, J. K., Lin, S., Liu, C. S., and Huang, B. J., 2011. Modern (< 100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31(1): 47-63.
Jan, S., Sheu, D.D., and Kuo, H.M., 2006. Water mass and through flow transport variability in the Taiwan Strait. Journal Geophysical Research, 111, C121012.
Kao, S.J., and Milliman, J.D., 2008. Water and sediment discharge from small Mountainous Rivers, Taiwan: the roles of lithology, episodic events and human activities. Journal of Geology, 116(5), 431-448.
Li, C.S., Shi, X.F., Kao, S.J., Chen, M.T., Liu, Y.G., Fang, X.S., Lu, H.H., Zou, J.J., Liu, S.F., and Qiao, S.Q., 2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57, 673-681.
Li, Y., Qiao, L., Wang, A., Zhang, Y., Fang, J., and Chen, J., 2013. Seasonal variation of water column structure and sediment transport in a mud depo-center off the Zhejiang-Fujian coast in China. Ocean Dynamics, 63, 679-690.
Liu, J.-P., Li, A.-C., Xu, K.-H., Velozzi, D.-M., Yang, Z.-S., Milliman, J.D., and DeMaster, D.-J., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Researcj, 26, 2141-2156.
Liu, J.-P., Liu, C.-S., Xu, K.-H., Milliman, J.D., Chiu, J.-K., Kao, S.-J., and Lin, S.-W., 2008.Flux and fate of small Mountainous Rivers derived sediments into the Taiwan Strait. Marine Geology, 256, 65-76.
Liu, J. T., Hung, J.-J, Lin, H.-L., Huh, C.-A., Lee, C.-L., Hsu, R.T., Huang, Y.-W., and Chu, J. C., 2009. From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine canyon. Journal of Marine Systems, 76, 417-432.
Liu, J.T., Kao, S.J., Huh, C.A., and Hung, C.C., 2013. Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review Marine Science, 5, 47-68.
Liu, J. T., Hsu, R.T., Yang, R. J., Wang, Y. P., Wu, H., Du, X., Li, A., Chien, S. C., Lee, J., Yang, S., Zhu, J., and Su, C.-C., Chang, Y., Huh, C.-A., 2018. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast. Scientific Reports, 8, 1-14.
Liu, X., Li, A., Dong, J., Lu, J., and Huang, J., Wan, S., 2018. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter, Journal of Asian Earth Sciences, 151, 1-15.
Liu, Z. F., Zhao, Y.L., Colin, C., Stattegger, K., Wiesner, M.G., Huh, C.A., Zhang, Y.W., Li, X.J., Sompongchaiyakul, P., You, C.F., Huang, C.Y., Liu, J.T., Siringan, F.P., Le, K.P., Sathiamurthy, E., Hantoro, W.S., Liu, J.G., Tuo, S.T., Zhao, S.H., Zhou, S.W., He, Z.D., Wang, Y.C., Bunsomboonsakul, S., and Li, Y.L., 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153, 238-273.
Milliman, J.D., Shen, H.T., Yang, Z.S., and Mead, R.H., 1985. Transport and deposition ofriver sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research, 4 (1-2), 37-45.
Milliman, J.D., and Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge. Ming, J., Li, A., Huang, J., Wan, S., Meng, Q., Jiang, F., Yan, W., 2014. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma. Chinese Journal of Oceanology and Limnology, 32(1), 174-186.
Olsen, C.R., I.L. Larsen, P.D. Lowry and N.H. Cutshall , 1986. Geochemistry and deposition of 7Be in river-estuarine and coastal waters. Journal of Geophysical Research, 91, 896-908.
Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., Yang, G., Liu, Y., Yao, Z., and Liu, S., 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea, Marine Geology, 390, 270-281.Reading, H. G., Collinson, J. D., 1996. Clastic coasts, In: Reading, H. G.(Ed.), Sedimentary Environment: Processes, Facies and Stratigraphy,3rd ed. Blackwell science, Oxford, pp. 154-231.
Reading, H. G., and Levell, B. K., 1996. Controls on the sedimentary rock record, In: Reading, H. G. (Ed.), Sedimentary Environment: Processes, Facies and Stratigraphy, 3rd ed. Blackwell science, Oxford, pp. 5-36.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg. A. G., Hughen, K. A., Kaiser, K.F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and Van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 55, 1869-1887.
Shin, T.C., and Teng, Tl., 2001. An overview of the 1999 Chi-Chi, Taiwan, earthquake. Bulletin Seismological Socirty America, 91, 895-913.
Wan, S.M., Li, A.C., Clift, P.D., and Stuut, J.-B.W., 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 561-582.
Walsh, J. P., and Nittrouer, C. A., 2009. Understanding fine-grained river-sediment dispersal on continental margins. Mar. Geol. 263, 34–45. Wright, L. D. and Nittrouer, C. A., 1995. Dispersal of river sediments in coastal seas - 6 contrasting cases. Estuaries, 18, No. 3:494-508.
Xu, F. J., Li, A. C., and Huang, J. L., 2012. Research progress in the mud deposits along the Zhe-Min coast of the East China Sea continental shelf. Marine Science Bulletin, 31, 97-104.
Xu, K., Milliman, J. D., Li, A., Liu, J. P., Kao, S. J., and Wan, S., 2009. Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29(18), 2240-2256.
Xu, Y.H., Chen, J., Wang, A.J., Li, Y.H., Wang, W.G., Zhang, X.F., and Lai, Z.K., 2013. Clay minerals in surface sediments of the Taiwan Strait and their provenance (in Chinese with English absract). Acta Sedimentologica Sinica, 31, 120-129.
Yang, Z.S., 1988. Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang Rivers and their relationship to the climate environment in their sediment source areas (in Chinese with English absract). Oceanol. Limnol. Sin., 19, 336-346.
Yang, X.S., 1995. Clay minerals of suspended sediments in Oujiang River. Marine Science Bulletin, 14 (3), 86-92.
Yang, S.Y., Jung, H.S., and Li, C.X., 2004. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology, 164, 19-34.
Yang, S.Y., Wang, Z.B., Guo, Y., Li, C.X., and Cai, J.G., 2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal Asian Earth Science, 35, 56-65.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code