Responsive image
博碩士論文 etd-0731118-111428 詳細資訊
Title page for etd-0731118-111428
論文名稱
Title
預鍍鎳先進高強度鋼熱浸鍍鋅合金化反應的研究
Investigation on galvannealing reactions of an advanced high strength steel precoated with nickel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-23
繳交日期
Date of Submission
2018-08-31
關鍵字
Keywords
鍍層結構、合金化反應、錳鋁鋼材、電鍍鎳、熱浸鍍鋅
coating structure, alloying reaction, hot dip galvanizing, electrodeposited nickel, Mn-Al steel
統計
Statistics
本論文已被瀏覽 5660 次,被下載 4
The thesis/dissertation has been browsed 5660 times, has been downloaded 4 times.
中文摘要
本研究在錳鋁鋼材表面預電鍍一層200 nm、1000 nm、2000 nm及3000 nm厚的鎳後,在鋁含量0.2 wt%鋅浴中進行熱浸鍍鋅,探討溫度與時間對預電鍍不同厚度鎳層的錳鋁鋼合金化反應前後的影響。完鍍試片以掃描式電子顯微鏡、場發射高解析電子微探儀及X光繞射儀分析表面形貌與鍍層結構,後續使用紅外線退火爐模擬合金化實驗,並同樣以掃描式電子顯微鏡、場發射高解析電子微探儀及X光繞射儀分析實驗後的鍍層結構。
實驗結果顯示,預鍍鎳試片在熱浸鍍鋅時,鎳鋅介面反應產物無法形成連續的阻障層阻止進一步的反應,因此合金化反應已從鎳鋅介面開始。當鎳層厚度為200 nm時,在底材與鍍層介面處形成δ-鐵鋅相,其上為T相,二者厚度佔整個鍍層厚度的三分之一,上方的三分之二厚度為純鋅與β1-鎳鋅相的混合組織。鎳層厚度為1000 nm時,介面沒有鐵鋅相的生成,而在底材介面處形成T相,其上有γ-鎳鋅相及純鋅的混合組織生成,表面也有鎳鋁相的生成。鎳層為3000 nm時,在底材介面仍有2 μm以上的鎳層殘留,其上二分之一鍍層為γ-鎳鋅相,再上方的二分之一為γ-鎳鋅相、β1-鎳鋅相及純鋅的複合組織。
合金化反應結果顯示,預鍍鎳的厚度對所生成的合金相有重要影響。鎳層厚度為1000 nm時,合金化反應初期以T相及δ-鐵鋅相為主,隨溫度上升與時間增加,在底材介面處會形成Γ-鐵鋅相,其上仍為δ-鐵鋅相及T相。鎳層厚度為2000 nm時,合金化反應初期由介面依序形成δ-鐵鋅相、T相及γ-鎳鋅相,隨溫度上升與時間增加,在底材介面處會形成Γ-鐵鋅相,其上為T相及γ-鎳鋅相;鎳層厚度為3000 nm時,合金化反應初期以γ-鎳鋅相為主,隨溫度上升與時間增加,鍍層仍以γ-鎳鋅相為主,但近表面的鍍層中鋁的固溶量增加。且合金化鍍層表面形成的鎳鋁相主要是由鋅浴中的鋁與鎳層反應生成。
Abstract
In this study, a nickel layer of 200 nm - 3000 nm thick was electrodeposited on the surface of a cold-rolled 6 wt% Mn-3wt% Al steel. The coated steel was then hot dip galvanized in a zinc bath containing 0.2 wt% of aluminum. The effect of the Ni thickness on the microstructures of the Zn coating before and after galvannealing were studied by x-ray diffraction, scanning electron microscopy and electron electron probe X-ray microanalyzer.
The experimental results showed that the interfacial reactions at the nickel-zinc interface proceeded on dipping, indicating the absence of an effective barrier layer formed at the interface. For the galvanized sample pre-coated with a nickel layer of 200 nm, a layer of δ-iron/zinc phase was formed at the interface followed by a T phase layer. On top of the T and δ-iron/zinc layers, a thick layer of Zn/β1-phase mixture was formed. For the galvanized sample pre-coated with a nickel layer of 1000 nm, no Fe-Zn phase was found at the interface. Instead, the coating is composed of a T-phase layer, a γ-nickel-zinc phase layer and a layer of Zn/γ-nickel-zinc phase mixture. At a thick nickel layer of 3000 nm, the galvanized coating consisted of a nickel layer of 2 μm thick, a γ-nickel-zinc phase layer and a Zn/γ/β1 mixture layer.
After galvannealing at 460-550 oC for 10-100 s, the alloying layer was composed of δ-Fe-Zn phase and T phase initially for the sample with a 1000 nm Ni layer. On increasing the galvannealing temperature, G Fe-Zn phase was formed at the interface. For the sample pre-coated with a 2000 nm Ni layer, the alloying layer is composed of δ-Fe-Zn, T and γ-Ni-Zn phases in sequence. The δ-Fe-Zn phase transformed to the γ-Fe-Zn phase on subsequent annealing. With increasing the Ni layer thickness to 3000 nm, the coating contained solely the γ-Ni-Zn phase no matter the annealing temperature and time. However, NiAl particles were observed on the surface.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
總目錄 vi
表目錄 ix
圖目錄 x
第一章、前言 1
第二章、文獻回顧 3
2.1先進高強度鋼的特性與選擇性氧化 3
2.2 熱浸鍍鋅製程與反應機構 6
2.2.1 熱浸鍍鋅的防蝕原理 6
2.2.2 連續式熱浸鍍鋅製程 7
2.2.3 合金化熱處理 8
2.3 熱浸鍍鋅鍍層結構 8
2.3.1 Fe2Al5的形成機構 8
2.3.2 合金化反應 10
2.4 電鍍鎳之中錳鋼的選擇性氧化與合金化反應 11
第三章、實驗方法 14
3.1 試片準備 14
3.1.1 電鍍鎳製程 14
3.1.2 熱浸鍍鋅處理 15
3.1.3合金化退火處理 15
3.1.4橫截面試片製作 15
3.2 掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析 16
3.3 場發射高解析電子微探儀(Electron Probe X-ray MicroAnalyzer, EPMA)分析 16
3.4 X光繞射儀(X-ray diffraction, XRD)分析 16
第四章、實驗結果 17
4.1完鍍試片的分析 17
4.1.1 1N200試片之分析 17
4.1.2 1N1000試片之分析 18
4.1.3 2N1000試片之分析 20
4.1.4 2N2000試片之分析 21
4.1.5 2N3000試片之分析 21
4.1.6 討論 22
4.2熱浸鍍鋅模擬器直接退火 23
4.2.1 XRD之分析 23
4.2.2 EPMA之分析 23
4.2.3 討論 24
4.3 RTA退火 25
4.3.1 R1000試片之分析 25
4.3.2 R2000試片之分析 28
4.3.3 R3000試片之分析 30
4.3.4 討論 31
4.4 綜合討論 33
4.4.1 相分析 33
4.4.2 元素擴散 33
4.4.3 應用 34
第五章、結論 36
第六章、參考文獻 37
附錄、圖表 45
參考文獻 References
1. D. K. Matlock, J. G. Speer, “Design Considerations for the Next Generation of Advanced High Strength Sheet Steels”, Proc. 3rd Int. Conf. Struct. Steels, ed. by H. C. Lee, Seoul, Korea, 2006, 774–781.
2. R. Kuziak, R. Kawalla, S. Waengler, “Advanced high strength steels for automotive industry: a review”, Arch. Civ. Mech. Eng., 8 (2008) 103-117.
3. R. W. Neu, “Performance and characterization of TWIP steels for automotive applications”, Mater. Performance, 2 (2013) 244-284.
4. H. Aydin, E. Essadiqi, I. H. Jung, S. Yue, “Development of 3rd generation AHSS with medium Mn content alloying compositions”, Mater. Sci. Eng. A, 564 (2013) 501-508.
5. Q. Li, X. Huang, W. Huang, “Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process”, Mater. Sci. Eng. A, 662 (2016) 129-135.
6. Z. C. Li, R. D. K. Misra, Z. H. Cai, H. X. Li, H. Ding, “Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect”, Mater. Sci. Eng. A, 673 (2016) 63-72.
7. K. K. Wang, C. W. Hsu, L. Chang, D. Gan, K. C. Yang, “Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel”, Appl. Surf. Sci., 285 (2013) 458-468.
8. 陳柷榥。電鍍層對先進高強度鋼表面選擇性氧化與熱浸鍍鋅介面反應的影響,國立中山大學材料與光電科學學系碩士學位論文,(2017)。
9. J. S. Yu, J. X. Zhang, J. S. Liu, J. G. Chen, “The overview of the coating performance of galvanized sheet applied in automobile”, Phys. Test. Chem. Anal. A, 41 (2005) 325-328.
10. C. A. N. Lanzillotto, F. B. Pickering, “Structure-property relationships in dual-phase steels”, Mater. Sci., 16 (1982) 371-383.
11. I. Aslam, B. Li, R.L. Martens, J.R. Goodwin, H.J. Rhee, F. Goodwin, “Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel”, Mater. Charact., 120 (2016) 63-68.
12. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, S. Claessens, “Selective oxidation of high Si, Mn and Al steel grade during recrystallization annealing and steel/Zn reactivity”, Proc. of the 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, IL, USA, April 4-7, (2004) 1123-1134.
13. P. J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. VanHumbeeck, & F. Delannay, “The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels”, ISIJ Int., 41 (2001) 1068-1074.
14. K. K. Wang, C. W. Hsu, L. Chang, D. Gan, K. C. Yang, “Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si–1.5Mn transformation-induced plasticity steel”, Appl. Surf. Sci., 285 (2013) 458-468.
15. T. K. Jeong, G. Jung, K. Lee, Y. B. Kang, H. K. D. H. Bhadeshia, D. W. Suh, “Selective oxidation of Al rich Fe–Mn–Al–C low density steels”, J. Mater. Sci. Technol., 30 (2014) 1805-1814.
16. E. M. Bellhouse, A. I. M. Mertens, J. R. McDermid, “Development of the surface structure of TRIP steels prior to hot-dip galvanizing”, Mater. Sci. Eng. A, 463 (2007) 147-156.
17. E. M. Bellhouse, J. R. McDermid, “Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-assisted Steel”, Metall. Mater. Trans. A, 42 (2011) 2753-2768.
18. C. Thorning, S. Sridha, “The role of grain boundary diffusion in initial selective oxidation kinetics of a manganese-aluminum TRIP steel”, J. Phase Equilib. Diff., 26 (2005) 539-546.
19. J. Mahieu, S. Claessens, B. C. De Cooman, F. Goodwin, “Surface and Sub-surface Characterization of Si-Aland P-alloyed TRIP-aided steel”, Proc. of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, June 26-28, (2001) 644-651.
20. Y. Kim, K. S. Shin, S. H. Jeon, K. G. Chin, J. Lee, “The influence of the dew point on the wettability of twinning-induced-plasticity steels by liquid Zn–0.23-wt% Al”, Corros. Sci., 85 (2014) 364-371.
21. M. Blumenau, M. Norden, F. Friedel, K. Peters, “Use of pre-oxidation to improve reactive wetting of high manganese alloyed steel during hot-dip galvanizing”, Surf. Coat. Technol., 206 (2011) 559-567.
22. S. Lee, B. C. De Cooman, “Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel”, Metall. Mater. Trans. A, 45 (2014) 5009-5016.
23. V. F. Zacky, E. R. Parker, D. Fahr, R. Busch, “The enhancement of ductility in high strength steel”, ASM. Trans. Quart., 60 (1967) 252-259.
24. Y. Zhao, Z. Hu, Y. Li, “Research and process of high strength steels for automotive use”, J. Guangxi Univ. Nat. Sci. Ed., 34 (2009) 419.
25. R. L. Miller, “Ultrafine-grained microstructures and mechanical properties of alloy steels”, Metall. Trans., 3 (1972) 905-912.
26. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, “Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel”, Acta Mater., 59 (2011) 4002-4014.
27. M. J. Merwin, “Low-carbon manganese TRIP steels”, Mater. Sci. Forum, 539-543 (2007) 4327-4332.
28. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, “Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite”, Scripta Mater., 63 (2010) 815-818.
29. D. W. Suh, S. J. Park, C. S. Oh, S. J. Kim, “Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels”, Scripta Mater., 57 (2007) 1097-1100.
30. D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, S. J. Kim, “Physical metallurgy and materials science”, Metall. Mater. Trans. A, 41 (2010) 397-408.
31. Z. Cai, H. Ding, Z. Ying, R. D. K. Misra, “Microstructure evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel”, J. Mater. Eng. Perform., 23 (2014) 1131-1137.
32. S. J. Park, B. Hwang, K. H. Lee, T. H. Lee, D. W. Suh, H. N. Han, “Microstructure and tensile behavior of duplex low-density steel containing 5 mass % aluminum”, Scripta Mater., 8 (2013) 365-369.
33. S. Jiang, S. Feng, X. Yuan, Y. Li, Z. Li, Q. Zhang, “Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel”, J. Iron. Steel. Res. Int., 21 (2014) 1059-1064.
34. K. R. Jo, L. Cho, J. H. Oh, M. S. Kim, K. C. Kang, B. C. De Cooman, “Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel”, Metall. Mater. Trans. A, 48 (2017) 3635-3641.
35. 蔡翔任。露點對錳鋁鋼材選擇性氧化的研究,國立中山大學材料與光電科學學系碩士學位論文,(2016)。
36. M. G. Fontana, N. D. Greene, “Corrosion Engineering”, McGraw-Hill, New York, 1967.
37. J. S. Yu, J. X. Zhang, J. S. Liu, J. G. Chen, “The overview of the coating performance of galvanized sheet applied in automobile”, Phys. Test. Chem. Anal. A, 41 (2005) 325-328.
38. A. R. Marder, “The metallurgy of zinc-coated steel”, Prog. Mater. Sci., 45 (2000) 191-271.
39. GalvInfo Notes, International Zinc Association, Apr. 2014.
40. D. Loison, D. Huin, V. Lanteri, J. P. Servais, R. Cremer, “Selective oxidation of Fe-Mn alloy:Surface characterization and modelling”, Proc. of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, June 26-28, (2001) 203-209.
41. Y. Morimoto, E. McDevitt, M. Meshii. “Characterization of the Fe-Al inhibition layer formed in the initial stages of hot-dip galvannealing”, ISIJ Int., 37 (1997) 906-913.
42. L. Chen, R. Fourmentin, J. R. Mc Dermid, “Morphology and Kinetics of Interfacial Layer Formation during Continuous Hot-Dip Galvanizing and Galvannealing”, Metall. Mater. Trans. A, 39A, (2008) 2128-2142.
43. E. Baril, G. L. Esperance, “Studies of the morphology of the Al-rich interfacial layer formed during the hot dip galvanizing of steel sheet”, Metall. Mater. Trans. A, 30 (1999) 681-695.
44. M. Guttmann, Y. Lepretre, A. Aubry, M.-J. Roche, T. Moreau, P. Drillet, J. M. Mataigne, H. Baudin, “Mechanisms of the galvanizing reaction influence of Ti and P contents in steel and of its surface microstructure after annealing”. Proc. of the 3rd International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, USA, September 17-21, (1995) 295-307.
45. M. Isobe, “Initial alloying behavior in galvannealing process”, CAMP-ISIJ, 5 (1992) 1629-1632.
46. N. Y. Tang, “Modeling Al enrichment in galvanized coatings”, Metall. Mater. Trans. A, 26A (1995) 1699-1704.
47. C. W. Hsu, K. K. Wang, L. Chang, D. Gan, Y. L. Chang, H. Y. Liang, H. P. Wang, “Formation of Fe2Al5-xZnx intermetallic crystals at the Fe-Zn interface in hot-dip galvanizing”, Mater. Charact., 137 (2018) 189-200.
48. M. L. Giorgi, J. B. Guillot, “Theoretical model of the interfacial reactions between solid iron and liquid zinc-aluminium alloy”, J. Mater. Sci., 40 (2005) 2263.
49. K. K. Wang, L. Chang, D. Gan, H. P. Wang, “Heteroepitaxial growth of Fe2Al5 inhibition layer in hot-dip galvanizing of an interstitial-free steel”, Thin Solid Films 518 (2010) 1935-1942.
50. J. S. Yu, J. X. Zhang, J. S. Liu, J. G. Chen, “The overview of the coating performance of galvanized sheet applied in automobile”, Phys. Test. Chem. Anal. A, 41 (2005) 325-328.
51. L. Bordignon, G. Angeli, H. Bolt, R. Hekkens, W. Mascheck, “Enhanced hot dip galvanizing by controlled oxidation in the annealing furnace”, Proc. of the 44th mechanical working and steel processing conference, Orlando, USA, September 8-11, 833-834 (2002).
52. M. Guttmann, “Diffusive phase transformation in hot dip galvanizing”, Mater. Sci. Forum, 155-156 (1994) 527-548.
53. P. J. Brown, “The Structure of the ζ phase in the Transition Metal-Zinc Alloy Systems”, Acta Cryst., 15 (1962) 608-612.
54. C. E. Jordan, A. R. Marder, “Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450˚C: Part I 0.00 wt% Al-Zn baths”, J. Mater. Sci., 32 (1997) 5593-5602.
55. P. J. Gellings, G. Gierman, D. Koster, J. Kuit, “Synthesis and Characterization of Homogeneous Intermetallic Fe-Zn Compounds III-Phase Diagram”, Z. Metallkd., 71 (1980) 70.
56. G. F. Bastin, F. J. J. Van Loo, G. D. Rieck, “Delta-Phase in the Fe-Zn System ”, Z. Metallkd., 68 (1977) 359.
57. A. Nishimoto, J. I. Inagaki, K. Nakaoka, “Effects of surface microstructure and chemical compositions of steels on Formation of Fe-Zn compounds during continuous galvanizing”, Trans. ISIJ, 26 (1986) 807-813.
58. J. Inagaki, M. Sakurai, T. Watanabe, “Alloying Reactions in Hot Dip Galvanizing and Galvannealing Processes”, ISIJ Int., 35 (1995) 1388-1393.
59. L. J. Swartzendruber, V. P. Itkin, C. B. Alcock, “The Fe-Ni (Iron-Nickel) System”, J. Phase Equilib., 12 (1991) 288-312.
60. P. Nash, Y. Y. Pan, “The Ni-Zn (Nickel-Zinc) System”, J. Phase Equilib., 8 (1987) 422-430.
61. F. Peng, F. Yin, X. Su, L. Zhi, M. Zhao, “560°C isothermal section of Zn–Fe–Ni system at the Zn-rich corner”, J. Alloys Compd., 402 (2005) 124-129.
62. S. M. A. Shibli, R. Manu, “Process and performance improvement of hot dip zinc coating by dispersed nickel in the under layer”, Surf. Coat. Technol., 197 (2005) 103-108.
63. H. Lee, J. Kim, “Effect of Ni addition in zinc bath on formation of inhibition layer during galvannealing of hot-dip galvanized sheet steels”, J. Mater. Sci. Lett., 20 (2001) 955-957.
64. N. Tang, X. Su, J. M. Toguri, “Experimental Study and Thermodynamic Assessment of the Zn-Fe-Ni System”, Calphad, 25 (2001) 267-277.
65. 鄭聿遠。未發表之實驗數據。中山大學材料與光電科學學系。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code