Responsive image
博碩士論文 etd-0731118-172001 詳細資訊
Title page for etd-0731118-172001
論文名稱
Title
碲化銻薄片中由厚度引發的磁傳輸與光學性質增強現象
The thickness-induced magneto-transport and optic properties enhancement in Sb2Te3 flakes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
43
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-13
繳交日期
Date of Submission
2018-09-03
關鍵字
Keywords
磁傳輸、碲化銻、磁阻效應、載子遷移率、光電流響應度
mobility, photocurrent response, magneto-transport, Sb2Te2, magnetoresistance
統計
Statistics
本論文已被瀏覽 5654 次,被下載 28
The thesis/dissertation has been browsed 5654 times, has been downloaded 28 times.
中文摘要
本實驗透過利用物理性質量測系統 (PPMS),針對不同厚度的拓樸絕緣體碲化銻 (Sb2Te3)進行量測。我們藉由改變溫度以及外加磁場的大小,觀察不同厚度碲化銻薄片的磁阻效應 (MR)、載子濃度 (carrier concentration),以及載子遷移率 (carrier mobility)的變化。
實驗結果顯示, 在外加磁場達到9 T以及在2 K到300 K的溫度區間內,磁阻效應變化率皆呈現線性非飽和 (non-satuating)。實驗結果也顯示在同樣溫度,這些薄片有著相同的電阻率,其線性磁阻卻隨著厚度的增加而變大。此外,實驗結果也顯示其載子遷移率隨著厚度增加並且與磁阻的變化有著線性相關。
從其他實驗結果也觀察到,拓樸材料薄片在照光下觀察到的光電流響應度,隨著厚度增加而變大。這個結果支持了當厚度增加,有效的載子遷移率增加使得其磁傳輸能力以及光學性質增強。
Abstract
The electric and optic properties were studied in the Sb2Te3 with different thicknesses. It reveals the same resistivity at measured temperatures, but shows a larger magneto-resistance (MR) ratio at thicker flakes. All measured data conformed to a linear correlation between magnetoresistance ratio and mobility over a wide mobility range. The magnetoresistance ratio is one-order enhanced. A higher photocurrent response is observed in thicker flakes. These results support the thickness enhances the effective carrier mobility which leads to magneto-transport and optic properties enhancement.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖次 vi
第一章 簡介 1
1-1 前言 1
1-2 動機 2
第二章 基本理論 3
2-1 霍爾效應 (Hall effect) 3
2-2 量子霍爾效應 (Quantum Hall effect) 4
2-3 量子自旋霍爾效應 (Quantum spin Hall effect) 5
2-4 拓樸絕緣體 (Topological insulator) 6
2-5 磁阻效應 (Megneto-resistance) 8
2-5-1 非飽和磁阻效應的非均勻系統模型 8
2-5-2 在拓樸表面的線性磁阻效應模型 10
2-5-3 量子磁阻效應模型 10
2-6 光電流響應度 (Responsivity) 12
第三章 實驗流程與儀器介紹 13
3-1 樣品製備與量測方法 13
3-2 量測系統 17
3-2-1 物理性質量測系統 (PPMS) 17
3-2-2 三維輪廓儀 (3D Alpha-Step Profilometer) 19
第四章 實驗結果與討論 20
4-1 實驗架構 20
4-2 結果與討論 21
4-2-1 電阻隨溫度的變化 21
4-2-2 電阻隨外加磁場的變化 23
4-2-3 霍爾效應的分析 26
4-2-4 厚度對載子傳輸影響的分析 29
第五章 結論 32
參考文獻 33
參考文獻 References
[1] L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions”, Phys. Rev. Lett. 98, 106803 (2007).
[2] J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures”, Phys. Rev. B 75, 121306 (R) (2007).
[3] M. Z. Hasan and C. L. Kane, “Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010).
[4] X. -L. Qi and S. -C. Zhang, “Topological insulators and superconductors”, Rev. Mod. Phys. 83, 1057 (2011).
[5] W. Zhang, R. Yu, H. J. Zhang, X. Dai, Z. Fang, “First-principles studies of 3-dimensional strong topological insulators: Bi2Te3, Bi2Se3, and Sb2Te3”, New Journal of physics 12, 065013 (2010).
[6] Z. Hou, W. Wang, G. Xu, X. Zhang, Z. Wei, S. Shen, E. Liu, Y. Yao, Y. Chai, Y. Sun, X. Xi, W. Wang, Z. Liu, G. Wu, and X. -X. Zhang, “High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi”, Phys. Rev. B 92, 235134 (2015).
[7] P. -C. Lee, Y. -C. Huang, C. H. Chien, F. Y. Chiu, Y. Y. Chen, and S. R. Harutyunyan, “A comparative study of size-dependent magnetoresistance and Hall resistance of Sb2Te3 nanoflakes”, Physica B 459, 12 (2015).
[8] J. Na, A. Hoyer, L. Schoop, D. Weber, B. V. Lotsch, M. Burghard, and K. Kern, “Tuning the magnetoresistance of ultrathin WT2 sheets by electrostatic gating”, Nanoscale 8, 18703 (2016).
[9] Y. S. Kim, M, Brahlek, N. Bansal, E. Edrey, G. A. Kapilevich, K. Iida, M. Tanimura, Y. Horibe, S. -W. Cheong, and S. Oh, “Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3”, Phys. Rev. B 84, 073109 (2011).
[10] 施敏, 李明達 著, 曾俊元 譯, “半導體元件物理與製造技術”, 第三版
[11] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance”, Phys. Rev. Lett. 45, 494 (1980).
[12] 王律堯, “自旋霍爾效應之簡介”. 台灣磁性技術協會會訊 49 期 SEP (2009).
[13] C. Kittel, “Introduction to solid state physics”, 8ed (2006).
[14] Y. Ando, “Topological insulator materials”, J. Phys. Soc. Jpn. 82, 102001 (2013).
[15] M. Bianchi, R. C. Hatch, D. Guan, T. Planke, J. Mi, B. B. Iversen, P. Hofmann, “The electronic structure of clean and adsorbate-covered Bi2Se3: an angle-resolved photoemission study”, Semicond. Sci. Technol. 27 124001 (2012).
[16] M. M. Parish and P. B. Littlewood, “Non-saturating magnetoresistance in heavily disordered semiconductors”, Nature (London) 426, 162 (2003).
[17] C. M Wang and X. L. Lei, “Linear magnetoresistance on the topological surface”, Physical Review B 86, 035442 (2012).
[18] A. A. Abrikosov, “Quantum magnetoresistance”, Physical Review B 58, 2788 (1998).
[19] J. W. McIver, D. Hsieh, S. G. Drapcho, D. H. Torchinsky, D. R. Gardner, Y. S. Lee, and N. Gedik, “Theoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi2Se3”, Phys. Rev. B 86, 035327 (2012).
[20] S. -M. Huang, S. -J. Huang, C. Hsu, P. V. Wadekar, Y. -J. Yan, S. -H. Yu, and M. Chou, “Enhancement of carrier transport characteristic in the Sb2Se2Te topological insulator nanosheets by N2 adsorption”, Sci. Rep. 7, 5133 (2017).
[21] P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, “Observation of Berry’s phase in a solid-state qubit”, Science 318, 1889-1892 (2007).
[22] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future”, Science 294, 1488-1495 (2001).
[23] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase”, Nature 452, 970-974 (2008).
[24] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of unconventional quantum spin textures in topological insulators”, Science 323, 919-922 (2009).
[25] S. -M. Huang, S. -Y. Lin, J. -F. Chen, C. -K. Lee, S. -H. Yu, M. Chou, C. -M. Cheng, and H. -D. Yang, “Shubnikov Vde Haas oscillation of Bi2Te3 topological insulators with cm-scale uniformity”, J. Phys. D: Appl. Phys. 49 255303, (2016).
[26] S. -M, Huang, S. -H. Yu, and M. Chou, “The linear magnetoresistance from surface state of the Sb2SeTe2 topological insulator”, J. Appl. Phys.
119, 245110 (2016).
[27] 陳瑞芳, “拓樸絕緣體Sb2SeTe2之線性磁阻”, 國立中山大學物理研究所碩士論文 (2016).
[28] 黃士哲, “拓樸絕緣體Sb2SeTe2奈米薄片光導特性”, 國立中山大學物理研究所碩士論文 (2017).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code