Responsive image
博碩士論文 etd-0801100-064036 詳細資訊
Title page for etd-0801100-064036
論文名稱
Title
都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試
A Study on the Measurement and Analysis of Mercury in Flue Gas Emitted from Municipal Waste Incinerator and the Adsorption of Gaseous Mercury Chloride by Powder Activated Carbon Derived from the Pyrolysis of Waste Tires
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
207
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-27
繳交日期
Date of Submission
2000-08-01
關鍵字
Keywords
煙道氣、焚化爐、廢輪胎、汞、活性碳、熱裂解、硫化改質、氯化汞
waste tires, activated carbon, sulfur-impregnation, municipal waste incinerator, pyrolysis, flue gas, HgCl2, mercury
統計
Statistics
本論文已被瀏覽 5706 次,被下載 2782
The thesis/dissertation has been browsed 5706 times, has been downloaded 2782 times.
中文摘要
本研究首先針對台灣地區都市垃圾焚化爐煙道排氣中含汞污染物之濃度進行量測,並結合廢棄物資源回收再生利用之觀念,利用廢輪胎熱裂解產物碳黑製備粉狀活性碳,並進行加硫改質,最後以自製之粉狀活性碳進行氣相氯化汞之管柱吸附實驗,俾做為都市垃圾焚化爐操作之重要參考。
都市垃圾焚化爐煙道排氣中含汞污染物之現場採樣與分析結果顯示,四座都市垃圾焚化爐排氣中粒狀物、含汞污染物及其他重金屬之排放濃度均合乎法規排放標準。除含汞污染物外,其他重金屬皆可達到90%以上的去除效率。A、B、C及D四廠之含汞污染物去除效率分別為83.71%及81.51%、96.22%及87.18%,顯示於煙道中噴入活性碳確實有助於含汞污染物之去除,而氧化態含汞污染物較元素態含汞污染物更容易被去除。
就廢輪胎熱裂解產物製備活性碳之影響因素而言,廢輪胎之熱裂解溫度約為400~500℃,殘餘固體之生成百分比約介於35%~37%之間;而氣體與胎油之生成則呈相互消長之現象。就熱裂解溫度而言,提高熱裂解溫度有助於碳黑孔隙的發展。此外,隨著注水速率與活化時間的增加,活性碳產率呈現逐漸減少之趨勢,但有助於活性碳孔隙的發展。而活性碳加硫改質之實驗結果顯示,加硫改質會造成活性碳比表面積的大幅減少,因此在進行加硫改質時,必須考量活性碳含硫量與比表面積之平衡。
本研究進一步以自行製備之粉狀活性碳進行氣相氯化汞管柱吸附實驗,其實驗結果顯示,在室溫(25℃)吸附條件下,活性碳之比表面積愈高者,其所需之飽和吸附時間較長,吸附效果較佳,吸附量亦隨著活性碳的比表面積增加而增加。在室溫之吸附條件下,硫化改質會降低活性碳的比表面積,導致活性碳吸附效率之降低;而比較兩種比表面積相近之活性碳,以含硫量高者吸附效果較佳,顯示增加活性碳中的含硫量對於吸附氣相氯化汞仍有所助益。在較高吸附溫度(150℃)下,活性碳之吸附容量隨著活性碳含硫量之增加而提昇。在室溫吸附條件下,活性碳吸附氣相氯化汞係以物理吸附為主,而在較高的操作溫度下,則以化學吸附較為重要。此外,在室溫之吸附條件下,自製之粉狀活性碳與焚化爐實際使用之商用粉狀活性碳之氯化汞吸附能力極為相似,而於150℃之吸附條件下,其吸附容量高於商用粉狀活性碳,此結果顯示本研究自行製備之粉狀活性碳亦可達到實廠使用活性碳的吸附水準。
Abstract
The objective of this study was to remove mercury vapor from municipal waste incinerator (MWI) by the adsorption of powder activated carbon (PAC) prepared from the pyrolysis of waste tire. The study focused on the measurement of mercury concentration in flue gas emitted from municipal waste incinerator, the preparation of PAC from the pyrolysis of the waste tire and impregnated with sulfur, and the adsorption capacity of mercury by the self-made PAC.
The measurement of heavy metals in flue gas emitted from four typical MWIs was conducted in this study. Experimental results obtained from the measurement of mercury from flue gas indicated that the removal efficiency of mercury ranged from 83.71%~96.22%for the tested MWIs. This study revealed that the injection of PAC in flue gas would enhance the removal efficiency of mercury. Besides, oxided mercury (Hg2+) can be removed much more easily than elemental mercury (Hg0).
Experimental results obtained from the pyrolysis of waste tires indicated that the pyrolysis temperature of waste tire was approximately 400~500℃, and the percentage of carbon residue is 35~37%. With higher temperature and water feed rate and longer activation time, the specific surface area and total pore volume of PAC increased while the average pore radius decreased. The highest specific surface area of PAC obtained in this study was 996 m2/g. In addition, experimental results obtained from sulfur impregnation process indicated that the specific surface area of PAC decreased dramatically as sulfur was added to PAC.
Experiment results obtained from the adsorption capacity of HgCl2 on PAC by column test indicated that PAC with higher specific surface area could adsorb more HgCl2 at room temperature (25℃). The adsorption capacity of sulfur impregnated PAC decreased at 25℃ was due to the decrease of specific surface area of PAC. However, results from the comparison of two PAC with similar specific surface area indicated that the PAC with higher sulfur content had higher adsorption capacity. It suggested that the addition of sulfur to PAC could enhance the adsorption of HgCl2 at 25℃. Experimental results obtained from column tests at 150℃ showed that the adsorption capacity of PAC increased as sulfur content of PAC increased. These results suggested that the adsorption mechanism of HgCl2 by PAC was mainly physical adsorption at lower temperature and it was chemisorption at higher temperature. Besides, the self-made PAC demonstrated the similar adsorption capacity of HgCl2 with commercial PAC used in MWIs.
目次 Table of Contents
謝誌
摘要
英文摘要
目錄
表目錄
圖目錄
第一章 前言
1-1 研究緣起
1-2 研究目的
1-3 研究流程
第二章 文獻回顧
2-1 汞之物化特性及影響
2-1-1汞之物理化學特性
2-1-2汞對人體健康之影響
2-2 都市垃圾焚化爐排氣中含汞污染物之來源及種類
2-2-1含汞污染物之來源
2-2-2含汞污染物之物種型態
2-3 都市焚化爐排氣中含汞污染物之控制技術及去除機制
2-3-1含汞污染物之補集機制與控制技術
2-3-2活性碳噴入設備
2-4 活性碳之種類、特性與應用
2-4-1活性碳之種類
2-4-2活性碳之特性
2-4-3活性碳在污染防治之應用
2-5 活性碳之製備方式
2-5-1物理活化
2-5-2化學活化
2-6 廢輪胎之組成與特性
2-7 廢輪胎之環境問題與處理技術
2-7-1國內外廢輪胎之環境問題
2-7-2國內外廢輪胎之處理技術
2-8 熱裂解原理、應用與特性
2-8-1熱裂解之原理
2-8-2影響熱裂解之操作條件
2-8-3廢輪胎熱裂解之產物成份
2-9 活性碳改質對吸附汞蒸氣的影響
第三章 研究方法
3-1 實驗設計與流程
3-2 都市垃圾焚化爐排氣中含汞污染物之現場煙囪量測
3-2-1實驗設備
3-2-2採樣流程
3-2-2-1煙道採樣方法
3-2-2-2煙道採樣前準備工作
3-2-2-3煙道採樣步驟
3-2-3樣品前處理與分析
3-2-3-1樣品前處理
3-2-3-2樣品分析
3-3 粉狀活性碳之製備與氣相氯化汞管柱吸附實驗
3-3-1實驗設計與流程
3-3-2實驗設備
3-3-2-1廢輪胎熱裂解系統
3-3-2-2活性碳製備系統
3-3-2-3活性碳硫化改質系統
3-3-2-4氣相氯化汞管柱吸附系統
3-3-2-5分析系統
3-3-3實驗方法
3-3-3-1廢輪胎熱裂解及碳黑活化反應
3-3-3-2活性碳硫化改質
3-3-3-3氣相氯化汞管柱吸附實驗
3-3-4分析方法
3-4 品保與品管
3-4-1煙道採樣之品保品管
3-4-1-1採樣前準備工作
3-4-1-2現場採樣品管查核
3-4-2實驗室分析品保品管
3-4-2-1實驗室可信度要素
3-4-2-2數據品保工作項目及執行方式
第四章 結果與討論
4-1 都市垃圾焚化爐煙道採樣工作
4-1-1煙道廢氣主要組成之分析
4-1-2都市垃圾焚化爐排氣中粒狀物濃度
4-1-3都市垃圾焚化爐煙道排氣中重金屬濃度
4-1-3-1煙道排氣中含汞污染物及重金屬之濃度
4-1-3-2煙道氣中氧化態與元素態含汞污染物之分佈
4-2 操作條件對廢輪胎熱裂解及碳黑活化之影響
4-2-1加熱溫度對廢輪胎熱裂解之影響
4-2-1-1產物生成百分比
4-2-1-2固態產物碳黑之元素分析
4-2-1-3固態產物碳黑微孔隙分析
4-2-2活化操作條件對活性碳物理性質之影響
4-2-2-1注水速率對碳黑活化之影響
4-2-2-2活化時間對碳黑活化之影響
4-3 粉狀活性碳之硫化改質
4-3-1改質含硫量對活性碳比表面積之影響
4-3-2硫份增加量對活性碳比表面積之影響
4-4 氣相氯化汞管柱吸附測試結果
4-4-1活性碳之比表面積對吸附氣相氯化汞之影響
4-4-2活性碳含硫量對吸附氣相氯化汞之影響
4-4-3自製與實廠使用粉狀活性碳之比較
第五章 結論與建議
5-1 結論
5-2 建議
參考文獻
附錄 A 採樣儀器校正紀錄
附錄 B 汞之檢量線
附錄 C ICP-MS校正曲線
附錄 D 元素分析圖例
附錄 E 蠕動幫浦校正曲線
附錄 F 實驗結果一覽表
參考文獻 References
1. C.S. Krivanek, III, “Mercury Control Technologies for MWC’s:The Unanswered Questions”, Journal of Hazardous Materials, Vol. 47, pp.119-136, 1996.
2. J.D. Kilgroe, “Control of Dioxin, Furan, and Mercury Emissions from Municipal Waste Combustors”, Journal of Hazardous Materials, Vol. 47, pp.163-194, 1996.
3. T.D. Brown, D.N. Smith, R.A. Hargis, Jr., and W.J. O’Dowd, “Mercury Measurement and Its Control:What We Know, Have Learned, and Need to Further Investigate”, Journal of A&WMA, Vol. 49, pp.628-640, 1999.
4. J.A. Korpiel and R.D. Vidic, “Effect of Sulfur Impregnation Method on Activated Carbon Uptake of Gas-Phase Mercury”, Environmental Science & Technology, Vol. 31, pp.2319-2325, 1997.
5. R.D. Vidic, Min-Tsang Chang and R.C. Thurnau, “Kinetics of Vapor-Phase Mercury Uptake by Virgin and Sulfur-Impregnated Activated Carbon”, Journal of A&WMA, Vol. 48, pp.247-255, 1998.
6. Wei Liu, R.D. Vidic and T.D. Brown, “Optimization of Sulfur Impregnation Protocol for Fixed-Bed Application of Activated Carbon-Based Sorbents for Gas-Phase Mercury Removal”, Environmental Science & Technology, Vol. 32, pp.531-538, 1998.
7. S.B. Ghorishi and C.B. Sedman, “Low Concentration Mercury Sorption Mechanisms and Control by Calcium-Based Sorbents:Application in Coal-Fired Processes”, Journal of A&WMA, Vol. 48, pp.1191-1198, 1998.
8. A. Gomez-Serrano, A. Macias-Garcia, A. Espinosa-Mansilla and C. Valenzuela-Calahorro, “Adsorption of Mercury, Cadmium and Lead from Aqueous-Solution on Heat-Treated and Sulphurized Activated Carbon”, Water Research, Vol. 32, pp.1-4, 1998.
9. R.D. Vidic and J.B. McLaughlin, “Uptake of Elemental Mercury Vapors by Activated Carbons”, Journal of A&WMA, Vol. 46, pp.241-250, 1996.
10. 魏玉麟, 王鴻博, “廢輪胎處理技術之探討”, 廢輪胎回收管理制度廢率及技術座談研討會資料集, 行政院環保署, pp.21-37, 民國88年.
11. 李得元, 李得口向, “廢輪胎粉粒填加於氯平橡膠之探討”, 第十三屆廢棄物處理技術研討會論文集, 中華民國環境工程學會, pp.49-54, 民國87年.
12. 陸仁傑編, “環境污染與防治處理”, 新學識文教出版中心, 1988.
13. 吳家誠, “重金屬之化學物種分類與分析技術”, 化學, 第49期, pp.316-322, 1991.
14. R.M. Harrison and S. Rapsomanikis, “Environmental Analysis Using Chromatography Interfaced with Atom Spectroscopy”, Chapter 10, Ellis Horwood, Chichester, England, pp.299, 1989.
15. N.A. Lange, Handbook of Chemistry, McGraw-Hill, New York, pp.288-290, 1976.
16. 毒性化學物質毒理資料庫, 行政院環境保護署, 1999.
17. F. Hasselriis and A. Licata, “Analysis of Heavy Mental Emission Data from Municipal Waste Combustion”, Journal of Hazardous Materials, Vol. 47, pp.77-102, 1996.
18. H.G. Rigo, J. Chandler and S. Sawell, Municipal Waste Combustion, VIP-32, A&WMA, pp.609, 1993.
19. Franklin Associates, Ltd., EPA530-R-92-013, US EPA, Washington, DC, 1992.
20. T.D. Brown, D.N. Smith, R.A. Hargis, Jr., and W.J. O’Dowd, “Mercury Measurement and Its Control:What We Know, Have Learned, and Need to Further Investigate,” Journal of A&WMA, Vol. 49, pp.628-640, 1999.
21. B. Hall, O. Lindqvist and E. Ljungstrom, “Mercury Chemistry in Simulated Flue Gases Related to Incineration Conditions”, Environmental Science & Technology, Vol. 24, pp.108-111, 1990.
22. D. Karatza, A. Lancia, D. Musmarra, F. Pepe and G. Volpicelli, “Kinetics of Adsorption of Mercuric Chloride Vapors on Sulfur Impregnated Activated Carbon”, Combustion Science and Technology, Vol. 112, pp.163-174, 1996.
23. J.A. Sorensen, G.E. Glass K.W. Schmidt, J.K. Huber and G.R. Rapp, Jr. “Airborne Mercury Deposition and Watershed Characteristics in Relation to Mercury Concentrations in Water, Sediments, Plankton, and Fish of Eighty Northern Minnesota Lake”, Environmental Science & Technology, Vol. 24, pp.1716-1727, 1990.
24. G.E. Glass, J.A. Sorensen, K.W. Schmidt, G.R. Rapp, Jr., D. Yap and D, Fraser “Mercury Deposition and Sources for the Upper Great Lakes Region”, Water, Air, and Soil Pollution, Vol. 56, pp.235-249, 1991.
25. 行政院環保署, ”廢棄物焚化爐空氣污染物排放標準,” 空氣污染防治法規, 行政院環境保護署環境保護人員訓練所, 民國八十七年七月.
26. Y. Otani, C. Kanaoka, C. Usui, S. Matsui and H. Emi “Adsorption of Mercury Vapor on Particles”, Environmental Science & Technology, Vol. 20, pp.735-738, 1986.
27. Y. Otani, H. Emi, C. Kanaoka, I. Uchijima and H. Nishino “Removal of Mercury Vapor from Air with Sulfur-Impregnated Adsorbents”, Environmental Science & Technology, Vol. 22, pp.708-711, 1988.
28. P. Schager, “The Behavior of Mercury in Flue Gases”, Ph.D. Dissertation, University of Goteborg, Goteborg, Sweden, November 1990.
29. D. Richard and J. Hahn, Municipal Waste Combustion, VIP-32, A&WMA, pp.918, 1993.
30. M.J. Clarke, Municipal Waste Combustion, VIP-32, A&WMA, pp.966, 1993.
31. K.L. Nebel, D.M. White and C.R. Parrish, “Emission Test Report-OMSS Field Test on Carbon Injection for Mercury Control”, Research Triangle Park, 1992.
32. US EPA, “Compilation of Air Pollution Emission Factors”, US EPA Office of Air Quality, PB93.
33. K.Kim, “Carbon-Electronchemical and Physicochemical Properties”, John Wiley & Sons. 1987.
34. M.M. Dubinin, “Adsorption Properties and Microporous Structure of Carbonaceous Adsorbents”, Carbon, Vol. 25, pp.593-589, 1987.
35. R.C. Bansal and J.B. Donnet, “Activated Carbon”, Marcel Dekker Inc., New York and Basel, 1988.
36. H.J. Fornwalt and R.A. Hutchins, “Purifying Liquids with Activated Carbon”, Chemical Engineering, Vol. 73, pp.155-160, 1966.
37. 廖志國, “操作條件對微波再生活性碳效率之影響及產物分析研究”, 國立中山大學環境工程研究所碩士論文, 1999.
38. C.C. Lin, “Application of Granular Activated Carbon for Water and Wastewater Purification”, Ph.D. Dissertation, University of Texas at Dallas, USA, 1982.
39. M.M. Dubinin, G.M. Plarnik and E.F. Ezverina, “Integrated Study of the Porous Structure of Activated Carbon from Carbonized Source”, Carbon, Vol. 2, pp.261-268, 1964.
40. M. Smisek and S. Cerny, ”Activated Carbon”, Elserier Publishing Company, Amsterdam, 1970.
41. P.L. Walker, O.C. Cariaso and I.M.K. Ismail, “Oxygen Chemisorption on As-Received and Acid-Treated Activated Carbon”, Carbon, Vol. 18, pp.375-377, 1980.
42. P.L. Cherrmisinoff and F. Ellerbusch, “Carbon Adsorption Handbook”, Ann Arbon Science Publishers Inc., 1978.
43. 趙承琛, “界面科學基礎”, 復文書局, 1985.
44. P. Harriott and A. Tat-Yan Chang, “Kinetics of Spent Activated Carbon Regeneration”, AIChE Journal, Vol. 34, pp.1656-1662, 1988.
45. 蔣本基, “活性碳物理化學特性對VOCs吸附之影響”, 工業污染防治, 第58期, 1996.
46. H. Juntgen, “New Application for Carbonaceous Adsorbents”, Carbon, Vol. 15, pp.273-283, 1973.
47. 蔣本基,張璞, “有機溶劑蒸氣之吸附及脫附研究”, 工業污染防治, 第58期, 1996.
48. A.A. Lizzio, J.A. DeBarr and C.W. Kruse, “Production of Activated Char from Illinois Coal for Flue Gas Cleanup”, Energy & Fuels, Vol. 11, pp.250-259, 1997.
49. K. Gergova, N. Petrov and V. Minkova, “A Comparison of Adsorption Characteristics of Various Activated Carbons”, Journal of Chemical Technology & Biotechnology, Vol. 56, pp.77-82, 1993.
50. S. Ogasawara, M. Kuroda and N. Wakao, “Preparation of Activated Carbon by Thermal Decomposition of Used Automotive Tires”, Ind. Eng. Chem. Res., Vol.26, pp.2552-2555, 1987.
51. T.G. Cleveland, S. Garg and W.G. Rixey, “Feasibility of Fullerene Waste as Carbonaceous Adsorbent”, Journal of Environmental Engineering ASCE, Vol. 122, pp.235-238, 1996.
52. S.K. Srivastava, R. Tyagi and N. Pant, ”Adsorption of Heavy Metal on Carbonaceous Material Developed from the Waste Slurry Generated in Local Fertilizer Plants”, Water Research, Vol. 2, pp.1161-1165, 1989.
53. M. Streat, J.W. Patrick and M.J.C. Perez, “Sorption of Phenol and Para-Chlorophenol from Water Using Conventional and Novel Activated Carbon”, Water Research, Vol. 29, pp.467-472, 1995.
54. T. Asakawa and K. Ogino, “Adsorption of Phenol on Surface-modified Carbon Black from Its Aqueous Solution”, Journal of Colloid and Interface Science, Vol. 102, pp.348-355, 1984.
55. 曾如玲, 吳豐智, “回收竹筷製備活性碳之研究”, 第十三屆廢棄物處理技術研討會論文集, 中華民國環境工程學會, pp.18-25, 民國87年.
56. 蔡文田, 張慶源, 王旭淵, “藉鉀鹽活化法從玉米穗軸研製活性碳”, 第十三屆廢棄物處理技術研討會論文集, 中華民國環境工程學會, pp.7-10, 民國87年.
57. A.M. Warhurst, G.L. McConnachie and S.J.T. Pollard,” Characterisation and Applications of Activated Carbon Produced from Moringa Oleifera Seed Husks by Single-Step Steam Pyrolysis”, Water Research, Vol. 31, pp.759-766, 1997.
58. K. Gergova and S. Eser, “Effects of Activation Method on the Pore Structure of Activated Carbons from Apricot Stones”, Carbon, Vol. 34, pp.879-888, 1996.
59. A. Ahmadpour and D.D. Do, “The Preparation of Activated Carbon from Macadamia Nutshell by Chemical Activation”, Carbon, Vol. 35, pp.1723-1732, 1997.
60. Hsisheng Teng, M.A. Serio, M.A. Wojtowicz, R. Bassilakis and P.R. Solomon, “Reprocessing of Used Tires into Activated Carbon and Other Products”, Ind. Eng. Chem. Res., Vol. 34, pp.3102-3111, 1995.
61. P.T. Williams, S. Besler and D.T. Taylor, ”The Pyrolysis of Automotive Tyres : The Influence of Temperature and Heating Rate on Product Composition”, Fuel, Vol. 69, pp.1474, 1990.
62. 楊金鐘, “論台灣地區廢輪胎的處理”, 工業污染防治, 第30期, 民國78年.
63. A.A. Merchant and M.A. Petrich, “Pyrolysis of Scrap Tires and Conversion of Chars to Activated Carbon”, AIChE Journal, Vol. 39, pp.1370-1376, 1993.
64. “廢輪胎資源再利用”, 財團法人中華民國之廢輪胎基金會.
65. 唐力原, “廢輪胎於氮+氧中熱分解反應動力參數之探討”, 國立中山大學環境工程研究所碩士論文, 1996.
66. H. Darmstadt, C. Roy and S. Kaliaguine, “Characterization of Pyrolytic Carbon Blacks from Commercial Tire Pyrolysis Plants”, Carbon, Vol. 33, pp.1449-1455, 1995.
67. G.S. Miguel, G.D. Fowler and C.J. Sollars, “Pyrolysis of Tire Rubber:Porosity and Adsorption Characteristics of the Pyrolytic Chars”, Ind. Eng. Chem. Res., Vol. 37, pp.2430-2435, 1998.
68. P.T. Williams, S. Besler and D.T. Taylor, “The Batch Pyrolysis of Tyre Waste—Fuel Properties of the Derived Pyrolytic Oil and Overall Plant Economics”, Proc. Instn. Mech. Eng., Vol. 207, pp.55-63, 1993.
69. N. Torikai, T. Meguro and Y. Nakamura, “Pore Size Distribution of Activated Made from Tires which Contain Carbon Blacks Differing in Particle Size”, Nippon Kagaku Kaishi, Vol. 11, pp.1604, 1979.
70. S.B. Ghorishi and C.B. Sedman, “Low Concentration Mercury Sorption Mechanisms and Control by Calcium-Based Sorbents:Application in Coal-Fired Processes”, Journal of A&WMA, Vol. 48, pp.1191-1198, 1998.
71. R.D. Vidic and J.B. Mclaughlin, “Uptake of Elemental Mercury Vapors by Activated Carbons”, Journal of A&WMA, Vol. 46, pp.241-250, 1996.
72. H.U. Hartenstein and M. Horvay, “Overview of Municipal Waste Incineration Industry in West Europe (based on German experience)”, Journal of Hazardous Materials, Vol.47, pp.19-30, 1996.
73. M.D. Hunsicker, T.R. Crokett and B.M.A. Labode, “Overview of Municipal Waste Incineration Industry in Asia and the Former Soviet Union”, Journal of Hazardous Materials, Vol.47, pp.31-42, 1996.
74. 張木彬, “垃圾焚化爐排氣中重金屬量測及處理效率評估”, 行政院環境保護署研究報告, 民國86年.
75. B.C. Young, S.J. Miller and D. Laudal, “Mercury Emission and Effects—The Role of Coal”, In Proceedings, Eleventh International Pittsburgh Coal Conference, Vol. 1, pp. 575-580, 1994.
76. C.L. Senior, J.R. Morency, G.P. Huffman, F.E. Huggins, N. Shah, T. Peterson, F. Shadman and B. Wu, In Proceedings, Fourth International Conference on Managing Hazardous Air Pollutants, Electric Power Research Institute:Palo Alto, CA, pp. IV.33-IV.41, 1994.
77. S.V. Krishana, B.K. Gullett and W. Jozewicz, “Sorption of Elemental Mercury by Activated Carbons”, Environmental Science & Technology, Vol. 28, pp. 1506-1512, 1994.
78. P.K. Sinha and P.L. Walker, “Removal of Mercury by Sulfurized Carbons”, Carbon, Vol. 10, pp. 754-756, 1972.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code