Responsive image
博碩士論文 etd-0801101-174130 詳細資訊
Title page for etd-0801101-174130
論文名稱
Title
以磁控濺鍍法形成鋯與鋯部分安定氧化鋯之凝聚物
Formation of Zr and Zr-Partialy Stabilized Zirconia Condensates by Supptering Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-13
繳交日期
Date of Submission
2001-08-01
關鍵字
Keywords
氧化鋯、凝聚物
TZP, Zirconia
統計
Statistics
本論文已被瀏覽 5677 次,被下載 34
The thesis/dissertation has been browsed 5677 times, has been downloaded 34 times.
中文摘要
論文摘要
本實驗以反應性濺鍍法製造鋯及氧化鋯薄膜及凝聚物 (condensates),以分析式電子顯微鏡分析研究濺鍍於覆碳有機薄膜上,所形成的超細晶粒 (crystallites) 顆粒之大小分佈,形狀,聚合方位與相變化等問題。這些大小從數毫微米到數十毫微米不等的凝聚物是建構薄膜的基本單位,其大小,形狀,方位,生成相對於薄膜微結構性質發展有重要的影響。以金屬鋯為靶材,反應氣體氧氣的流量分別通以0~8 sccm,結果不論氧流量多寡都以氧化鋯相出現,而沒有明顯金屬鋯。氧化鋯 (ZrO2) 晶粒大小隨氧氣流量增加而增加,當氧流量為0~2 sccm時,晶粒尺寸 10 nm,為立方晶(tetragonal)相及正方晶(cubic)相,為(c+t),隨流量增加正方晶相的量慢慢增多。當氧流量為3 sccm時單斜晶(monoclinic)相出現,為(c+t+m),晶粒尺寸為10 與20 nm間。當氧流量增大到4與4.5 sccm時,單斜晶相幾乎消失,此時有部分沈積物已不再是凝聚物,而是具有固態燒結現象的複晶立方晶相(TZP),晶粒大小約20 nm。氧流量為6與8 sccm時,晶粒幾乎都大於20 nm,有大於30 nm晶粒產生並且進行t m麻田散相變而出現具(111)雙晶面孿晶。流量在0到2 sccm時其生成相為Zr-ZrO2相圖中之穩定相,顯示濺鍍過程中Zr/O比值偏高,使Zr成低價數離子而穩定了立方晶與正方晶相,也可能是因為晶粒變小而穩定高溫穩定相。在氧流量為4與4.5 sccm時所得TZP,是由具固相燒結時受周圍晶粒制約而抑制了麻田散相變。高解析電子影像分析結果顯示氧化鋯晶粒間可藉著 {111} 與 {100}等特殊面進行聚合,當進行至較完美之聚合時,數顆小晶粒可輕易聚結成晶向一致之較大晶粒,而在不完美聚合時,則產生差排。此外也觀察到disorder,triple junction,necking等燒結現象。濺鍍於玻璃片上之鍍層,則於氧流量3與4 sccm之間發生由黑變乳白透明的顏色改變。此等凝聚物在不同基材上隨後之熱處理中,可望產生相變化及微結構改變,對工程應用之影響值得進一步評估。


Abstract
none
目次 Table of Contents
目錄 頁次
摘要 i
目錄 ii
前言 1
實驗原理方法 8
實驗結果 10
討論 14
總結 25
參考文獻 26
圖 28
附錄
參考文獻 References
1. R. F. Domagala and D. J. McPherson, “System Zirconium-Oxygen,” J. Metals, 6, Trans. AIME, 200 [2] 238-246, (1964).
2. M. Hanson and K. Anderko, Constitution of Binary Alloys, 2d ed., pp. 1078-80. McGraw-Hill Book Co., New York, 1958.
3. E. Gebhardt, H. D. Seghezzi, and W. Duerrschnavel, “Research on the System Zirconium-Oxygen: Ⅰ,” J. Nucl. Mater., 4 [3] 241-54 (1961); “Ⅱ,” pp. 255-268; “Ⅲ,” pp. 269-71.
4. R. Ruh and H. J. Garrett, “Nostoichiometry of ZrO2 and Its Relation to Tetragonal-Cubic Inversion in ZrO2” J. Am. Ceram. Soc. 50, 257-261, (1967).
5. G. Teufer, “The Crystal Structure of Tetragonal ZrO2” Acta Crystal. 15[11],1187, (1962).
6. P. Li, I. W. Chen and J. E. Penner-Hanh “Effect of Dopants on Zirconia Stabilization, An X-ray Absorption Study: I, Trivalent Dopants,” J. Am. Ceram. Soc.77, 118-128, (1994) .
7. J. G. Bendoraities and R. E. Salomon, “Optical Energy Gaps in the Monoclinic Oxides of Hafnium and Zirconium and their Solids Solutions,” J, Phys. Chem., 69, 3555, (1965).
8. M. Morinaga, H. Adachi, and M. Tsukuda, “Electronic Structure and Phase Stability of ZrO2,” J. Phys. Chem. Solids, 44, 301-306, (1983).
9. N. Claussen and M. Rühle, Design of Transformation-Toughened Ceramic, in Science and Technology of Zirconia, Advances in Ceramics, Vol. 3, A. H. Heuer, and L. W. Hobbs, “Transformation Toughening: part 3 Experimental Observation in the ZrO2-Y2O3 System,” J. Master. Sci., 17, 240-246, (1982).
10. A. Heuer, N. Claussen, W. M. Kriven, and M. Rühle, “Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. Am. Ceram. Soc., 65 [12] 642-650, (1982).
11. D. L. Porter, “Microstructural-Mechanical Property Relationship in an MgO-Partially Stabilized Zirconia,” Ph.D. Thesis, Case Western Reserve University, 1977.
12. A. H. Heuer, N. Claussen, W. M. Kriven, and M. Rühle, “Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. Am. Ceram. Soc., 65 [12] 642-650, (1982).
13. T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff and B. R. Rossing, “Stabilization of Tetragonal Phase in Polycrystalline Zirconia,” J. Mater. Sci., 12, 2421-2426, (1977).
14. M. Watanabe, S. Lio, and I. Fukuura, “Aging Behavior of Y-TZP,” p. 391—398 in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia Ⅱ. The Am. Ceram. Soc., OH, (1984).
15. H. Y. Lu and S. Y. Chen, “Low-Temperature Aging of t-ZrO2 Polycrystals with 3 mol% Y2O3,” J. Am. Ceram. Sci., 70[8] 537-541, (1987).
16. S. L. Hwang and I. W. Chen, “Grain Size of Tetragonal Zirconia Polycrystals Using the Space Charge Concept,” J. Am. Ceram. Soc., 73 [11] 3269-3277, (1990).
17. R. Kern, A. Masson and J. J. Métois, “Migration Brownienne de Cristallites sur une Surface et Relation avec L’épitaxie,” Surface Science 27, 483-498, (1971).
18. A. Masson, J. J. Métois and R. Kern, “Migration Brownienne de Cristallites sur une Surface et Relation avec L’épitaxie, “Surface Science 27, 463-482, (1971).
19. J. J. Métois, M. Gauch, A. Masson and R. Kern, “Migration Brownienne de Cristallites sur une Surface et Relation avec L’épitaxie,” Surface 30, 43-52, (1972).
20. J. J. Métois, M. Gauch, A. Masson and R. Kern, “Epitaxie: Pheenoméne de Postudéation sur L’example des Couches Minces Discontinues d’Aluminium et d’Or sur (100) KCl,” Thin Solid Films 11, 205-218, (1972).
21. J. J. Métois, “Migration Brownienne de Crystallites sur une Surface et Relation avec L’épitaxie,” Surface Science 36, 269-280, (1973).
22. L.Y. Kuo and P. Shen, “Shape Dependent Coalescence and Preferred Orientation of CeO2 Nanocrystallites,” Materials Science and Engineering A227, 258-265, (2000).
23. L.Y. Kuo and P. Shen, “On the Rotation of Non-Epitaxy Crystallites on Single Crystal Substrate,” Surface Science 373, L350-L356, (1997).
24. L.Y. Kuo and P. Shen, “On the Condensation and Preferred Orientation of TiC Nanocrystals-Effect of Electric Field, Substrate Temperature and Second Phase,” Materials Science and Engineering A276, 99-107, (1999).
25. W. H. Lee, P. Shen, “On the Coalescence and Twinning of Cubo-Octahedral CeO2 Condensates,” Journal of Crystal Growth 205, 169-176, (1999).
26. W-H. Lee and P. Shen, “Formation of Ceria Partially Stabilized Zirconia Nanocrystals by Laser Evaporation-Condensation,” Advanced Power Technology 10, [4], 383-397 (1997).
27. D. Walton, “Nucleation of Vapor Deposits,” J. Chem. Phys. 37, 2182-2188, (1962).
28. A. N. Goldstein, C. M. Echer, A. P. Alivisatos, “Melting in Semiconductor Nanocrystals,” Science 256, 1425-1426, (1992).
29. R. C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem. 69 [4], 1239-1243, (1965).


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.181.21
論文開放下載的時間是 校外不公開

Your IP address is 3.17.181.21
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code