Responsive image
博碩士論文 etd-0801103-214919 詳細資訊
Title page for etd-0801103-214919
論文名稱
Title
全光式非線性光波導元件之研究
The Study of All-optical Nonlinear Waveguide Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
157
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-27
繳交日期
Date of Submission
2003-08-01
關鍵字
Keywords
空間光固子、光束傳播法、非線性光波導、馬赫詹德波導干涉儀、全光式元件
All-optical Device, Nonlinear Optical Waveguide, Spatial Optical Soliton, Mach-Zehnder Waveguide Interferometer, Beam Propagation Method
統計
Statistics
本論文已被瀏覽 5724 次,被下載 0
The thesis/dissertation has been browsed 5724 times, has been downloaded 0 times.
中文摘要
本論文主要是利用光束傳播法來分析非線性光波導結構的特性及應用。非線性光波導是指光波導結構中含有折射率會隨電場強度改變的介質。利用模態定理,覆層、基層為非線性介質的三層光波導可被求解。不僅繪出了此結構的色散曲線圖,也從中觀察到輸入功率對電場分佈的影響。
在非線性光波導結構的應用方面,討論了非線性三層光波導結構和具有局部非線性的馬赫詹德波導干涉儀結構:在非線性三層光波導結構中,藉由對稱及反對稱模態的輸入,各種空間光固子的特性將被發現。利用空間光固子間的交互作用特性,一個全光式開關元件被提出;在局部非線性的馬赫詹德波導干涉儀結構中,藉由控制功率的改變,輸出端顯示出開關特性。此外,改變局部非線性介質的分布,將使其具有數種邏輯功能。數值結果顯示,所提出的光波導結構的確可作為全光式開關及邏輯閘元件的應用。
Abstract
In the paper, the beam propagation method is used to analyze the characteristics and the applications of nonlinear optical waveguide structures. The nonlinear optical waveguide is a medium whose refractive index changes with the electric field intensity. Based on the mode theory, the propagating envelop of optical light waves in the three-layers nonlinear waveguide with the nonlinear cladding, the nonlinear substrate and the linear guiding film can be solved. Not only the dispersion relation curve is described, but also the affection of input power to the electric field distribution is observed.
In the application of nonlinear optical waveguide structure, the three-layers nonlinear waveguide structure and the local nonlinear Mach-Zehnder waveguide interferometer structure will be discussed: In the three-layers nonlinear waveguide structure, by launching the symmetric and antisymmetric modes, various characteristics of spatial optical solitons will be observed. Based on the interaction property between spatial optical solitons, a new all-optical 1×N switching device will be proposed; In the local nonlinear Mach-Zehnder waveguide interferometer structure, by fixing the input signal power and changing the control power, output signal beam will show the switching property. Besides, by changing the local nonlinear distributions, the nonlinear Mach-Zehnder interferometer will show various logic functions. The numerical results show that the proposed structures could function as all-optical switch devices and all-optical logic gates.
目次 Table of Contents
Acknowledgement Ⅰ
Abstract Ⅱ
Contents V
Figure Captions VIII
Table Captions XIX
List of Symbols XX
Chapter 1 Introduction 1
Chapter 2 Basic Theory and Numerical Method 6
2.1 Mode Theory and Dispersion Relation 6
2.2 Beam Propagation Method 16
2.3 Spatial Optical Soliton 18
Figures 20
Chapter 3 Excitation and Interaction of Spatial Optical Solitons in Uniform Nonlinear Medium 41
3.1 Introduction 41
3.2 Numerical Method 42
3.3 Numerical Results 46
3.4 Conclusions 48
Figures 50
Chapter 4 New All-optical Switching Device by Using Interaction Property of Spatial Optical Solitons in Uniform Nonlinear Medium 72
4.1 Introduction 72
4.2 Analysis 74
4.3 Numerical Results 75
4.4 Conclusions 80
Figures 81
Chapter 5 New All-optical Switching Device by Using Local Nonlinear Mach-Zehnder Waveguide Interferometer Structure 99
5.1 Introduction 99
5.2 Analysis 100
5.3 Numerical Results 101
5.4 Conclusions 107
Figures 108
Chapter 6 New All-optical Logic Devices by Using Local Nonlinear Mach-Zehnder Waveguide Interferometer Structure 131
6.1 Introduction 131
6.2 Analysis 132
6.3 Numerical Results 134
6.4 Conclusions 136
Figures 137
Tables 143
Chapter 7 Conclusions 145
References 147
參考文獻 References
[1] S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: Observation in a nonlinear planar waveguide,” Opt. commun., Vol. 65, pp. 193-198 (1988).
[2] Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron., Vol. 4, pp. 1-34 (1975).
[3] J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron., Vol. 4, pp. 35-110 (1975).
[4] J. T. Manassah, P. L. Baldeck, and R. R. Alfano, “Self- focusing and self-phase modulation in a parabolic graded- index optical fiber,” Opt. Lett., Vol. 13, pp. 589-591 (1988).
[5] J. T. Manassah, P. L. Baldeck, and R. R. Alfano, “Self- focusing, self-phase modulation, and diffraction in bulk homogeneous material,” Opt. Lett., Vol. 13, pp. 1090-1092 (1988).
[6] A. E. Kaplan, “Theory of hysteresis reflection and refraction of light by boundary of nonlinear medium,” Sov. Phys. JETP., Vol. 45, pp. 896-905 (1997).
[7] L. Friedrich and G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, ”Dynamic, electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett., Vol. 23, No. 18, pp. 1438-1440 (1998).
[8] S. Adachi, “GaSa, AlAs, and AlxGal-xAs: Material parameters for use in research and device applications,” J. Appl. Phys., Vol. 58, No. 3, pp. R1-29 (1985).
[9] Hideki Nakayama, Okihiro Sugihara, and Naomichi Okamoto, ”Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using high Tg polymer,” Appl. Phys. Lett., Vol. 71, No. 14, pp. 1924-1926 (1997).
[10] G. Poga, T. M. Brown, and M. G. Kuzyk, Carl W. Dirk, “Characterization of the excited state of a sequaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B, Vol. 12, No. 4, pp. 531-543 (1995).
[11] Colin Pask, David R. Rowland, and Wagdy Samir, ”Constant of motion for modal interactions in nonlinear waveguides,” J. Opt. Soc. Am. B, Vol. 15, No. 7, pp. 1871-1879 (1998).
[12] Sang-Shin Lee, Sean Garner, William H. Steier, and Sang-Yung Shin, ”Integrated optical polarization splitter based on photobleaching-induced birefringence in azo dye polymers,” Applied Optics, Vol. 38, No. 3, pp. 530-533 (1999).
[13] B. Hermansson, D. Yevick, and P. Danielsen, “Propagation beam analysis of multimode waveguide tapers,” IEEE J. Quantum Electron., Vol. QE-19, pp. 1246-1251 (1983).
[14] B. Hermansson, D. Yevick, and J. Saijonmaa, “Propagation beam method analysis of two-dimensional microlenses and three-dimensional taper structures,” J. Opt. Soc. Am. B, Vol. 1, pp. 663-671 (1984).
[15] W. C. Chang, S. F. Liu, and W. S. Wang, “Novel photonic device using nonlinear corner-bend structure,” Electron. Lett., Vol. 27, pp. 2190-2192 (1991).
[16] C. K. Kim, J. M. Jeong, and H. Chang, “All-optical logic functions in a bent nonlinear Y-junction waveguide,” Jpn. J. Appl. Phys., Vol. 37, pp. 832-836 (1998).
[17] P. A. Belanger and P. Mathieu, “Dark soliton in a Kerr defocusing medium,” Appl. Opt., Vol. 26, pp. 111-113 (1987).
[18] J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett., Vol. 15, pp. 471-473 (1990).
[19] D. R. Andersion, D. E. Hooton, G. A. Swartzlander, and A. E. Kaplan, “Direct measurement of transverse velocity of dark spatial solitons,” Opt. Lett., Vol. 15, pp. 783-785 (1990).
[20] J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Spatial optical solitons in planar glass waveguides,” J. Opt. Soc. Am. B, Vol. 8, pp. 1290-1297 (1991).
[21] J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett., Vol. 16, pp. 15-17 (1991).
[22] R. De La Fuente, A. Barthelemy, and C. Froehly, “Spatial soliton induced guided waves in a homogeneous nonlinear Kerr medium,” Opt. Lett., Vol. 16, pp. 793-795 (1991).
[23] G. R. Allan, S. R. Skinner, D. R. Anderson, and A. L. Smirl, “Observation of fundamental dark spatial solitons in semiconductors using picosecond pulses,” Opt. Lett., Vol. 15, pp. 156-158 (1991).
[24] S. R. Skinner, G. R. Allan, D. R. Anderson, and A. L. Smirl, “Dark spatial soliton propagation in bulk ZnSe,” IEEE J. Quantum Electron., Vol. QE-27, pp. 2211-2219 (1991).
[25] L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton, and J. V. Moloney, “Beam propagation method analysis of a nonlinear directional coupler,” Opt. Lett., Vol. 11, pp. 739-741 (1986).
[26] J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All- optical switching in nonlinear X junctions,” Appl. Phys. Lett., Vol. 55, pp. 1176-1178 (1989).
[27] H. Fouckhardt, and Y. Silberberg, “All-optical switching in waveguide X junctions,” J. Opt. Soc. Am. B, Vol. 7, pp. 803-809 (1990).
[28] J. S. Aitchison, A. Villeneuve, and G. I. Stegeman, “All- optical switching in a nonlinear GaAlAs X junction,” Opt. Lett., Vol. 18, pp. 1153-1155 (1993).
[29] H. Murata, and M. Izutsu, “Optical bistability and all-optical switching in novel waveguide junctions with localized optical nonlinearity,” J. Lightwave Technol., Vol. 16, pp. 833-840 (1998).
[30] H. Murata, M. Izutsu, and T. Sueta, “All-optical switching in novel waveguide X-junctions with localized nonlinearity,” IEICE Trans. Electron., Vol. E82-C, pp. 321-326 (1999).
[31] G. Cancellieri, F. Chiaraluce, E. Gambi, and P. Pierleoni, ”Coupled-soliton photonic logic gates: practical design procedures” J. Opt. Soc. Am. B, Vol. 12, pp. 1300-1306 (1995).
[32] P. Sansonetti, E. C. Caquot, and A. Carenco, “Design of semiconductor electrooptic directional coupler with the beam propagation method,” J. Lightwave Technol., Vol. 7, pp. 385-389 (1989).
[33] W. K. Burns, and A. F. Milton, “Mode conversion in planar dielectric separating waveguides,” IEEE J. Quantum Electron., Vol. 11, pp. 32-39 (1975).
[34] M. I. Zutsu, Y. Nakai, and T. Sutena, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett., Vol. 7, pp. 136-138 (1982).
[35] R. W. Micallef, YU. S. Kivshar, J. D. Love, D. Burak, and R. Binder, “Generation of spatial solitons using non – linear guided modes,” Optical and quantum Electronics, Vol. 30, pp. 751-770 (1998).
[36] J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, “Time- dependent propagation of high energy laser beams through the atmosphere,” J. Appl. Phys., Vol. 10, pp. 129-160 (1976).
[37] L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron., Vol. 15, pp. 433-439 (1983).
[38] D. Yevick, and P. Danielsen, “Numerical investigation of mode coupling in sinusoidally modulated GRIN planar waveguides,” Appl. Opt., Vol. 21, pp. 2727-2733 (1982).
[39] P. Danielsen, and D. Yevick, “Improved analysis of the propagating beam method in longitudinally perturbed optical waveguides,” Appl. Opt., Vol. 21, pp. 4188-4189 (1982).
[40] R. Baets, and P. E. Lagasse, “Calculation of radiation loss in integrated-optic tapers and Y-junctions,” Appl. Opt., Vol. 21, pp. 1972-1978 (1982).
[41] B. Hillerich, and J. Guttmann, “Deterioration of tapar lens performance due to taper asymmetry,” J. Lightwave Technol., Vol. 7, pp. 99-104 (1989).
[42] Yaw-Dong Wu, and Yow-Chyuan Jang, “The application of spatial soliton in the planar nonlinear waveguide,” Department of Electrical Engineering National Kaoshiung University of Applied Sciences Kaoshiung, Taiwan, Republic of China, pp. 12-13 (2003).
[43] F. Lederer, U. Langbein, and H. –E. Ponath, “Nonlinear waves guided by a dielectric slab,” Appl. Phys. B, Vol. 31, pp. 69-73 (1983).
[44] G. I. Stegeman, C. T. Seaton, J. Chilwell, and S. D. Smith, “Nonlinear waves guided by thin films,” Appl. Phys. Lett., Vol. 44, pp. 830-832 (1984).
[45] P. Li Kam Wa, J. E. Stich, N. J. Mason, J. S. Robert, P. N. Robson, “All optical multiple–quantum–well waveguide switch,” Electron Lett., Vol. 21, pp. 26-27 (1985).
[46] J. D. Valera, B. Svensson, C. T. Seaton, and G. I. Stegeman, “Bistability and switching in thin film waveguides with liquid crystal cladding,” Appl. Phys. Lett., Vol. 48, pp. 573-574 (1986).
[47] N. akhmediev, and A. Ankiewicz, “Spatial soliton X-junction and couplers,” Optics communications, Vol. 100, pp. 186-192 (1993).
[48] F. Garzia, C. Sibilia, and M. Bertolotti, “All–optical serial switcher,” Optical and Quantum Electronics, Vol. 32, pp. 781-798 (2000).
[49] Y. Chung and N. Dagli, “Assessment of finite difference beam propagation method,” IEEE J. Quantum Electron., Vol. 26, pp. 1335-1337 (1990).
[50] G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron., Vol. 22, pp. 95-122 (1990).
[51] C. T. Seaton, X. Mai, G. I. Stegeman, and H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng., Vol. 24, pp. 593-599 (1985).
[52] G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol., Vol. 6, pp. 953-970 (1988).
[53] D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” in progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1989), Vol. 27, pp. 227-313.
[54] M. Bertolotti, “Introduction to nonlinear guided waves,” in Advances in Integrated Optics, S. Martellucci, A. N. Chester, and M. Bertolotti, ed. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 21-55.
[55] A. Ankiewicz, A. W. Snyder, and X. H. Zheng, “Coupling between parallel optical fiber cores--Critical examination,” IEEE Int. Lightwave Tech., Vol. 4, pp. 1317-1323 (1986)
[56] F. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett., Vol. 51, pp. 1135-1137 (1987)
[57] S. M. Jensen, “The nonlinear coherent coupler,” IEEE Journal of Quantum Electronics, Vol. 18, pp. 1580-1584 (1982).
[58] B. Daino, G. Gregori, and S. Wabnitz, “New all-optical devices based on third-order nonlinearity birefringent fibers,” Opt. Lett., Vol. 11, pp. 42-44, (1986).
[59] S. Wabnitz, E. M. Wright, C. T. Seaton, and G. I. Stegeman, “Instabilities and all-optical phase-controlled switching in a nonlinear directional coherent coupler,” Appl. Phys. Lett., Vol. 49, pp. 838-840 (1986).
[60] Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics, Vol. 26, pp. 529-535 (1994).
[61] Liu, X.F.; Ke, M.L.; Qiu, B.C.; Bryce, A.C.; Marsh, J.H., “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on, pp. 412-414 (2000).
[62] Ehlers, H.; Schlak, M.; Fischer, U.H.P., “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit, Vol. 3, pp. WDD66-1-WDD66-3 (2001).
[63] Pavelescu, L., “Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International, Vol. 1, pp. 201-204 (2001).
[64] T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics, Vol. 38, pp. 37-46 (2002).
[65] Y. H. Pramono and Endarko, “Nonlinear waveguides for optical logic and computation,” Journal of Nonlinear Optical Physics & Materials, Vol. 10, pp. 209-222 (2001).
[66] Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics, Vol. 26, pp. 529-535 (1994).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.34.162
論文開放下載的時間是 校外不公開

Your IP address is 3.144.34.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code